Improvements in resistance to wear and mechanical damage of the articulating surfaces have a large influence on longevity and reliability of joint replacement devices. Modern ceramics have demonstrated ultra-low wear rates for hard-on-hard total hip replacements. Generation of very low concentrations of wear debris in simulator lubricants has made it challenging to isolate the particles for characterisation and further analysis. We have introduced a novel method to isolate ceramic and metal particles from serum-based lubricants using enzymatic digestion and novel sodium polytungstate gradients. This is the first study to demonstrate the recovery of ceramic and metal particles from serum lubricants at lowest detectable in vitro wear rates reported in literature.
The adverse biological impact of orthopaedic wear debris currently limits the long-term safety of human joint replacement devices. We investigated the role of particle size, surface composition and donor variation in influencing the biological impact of silicon nitride as a bioceramic for orthopaedic applications. Silicon nitride particles were compared to the other commonly used orthopaedic biomaterials (e.g. cobalt-chromium and Ti-6Al-4V alloys). A novel biological evaluation platform was developed to simultaneously evaluate cytotoxicity, inflammatory cytokine release, oxidative stress, and genotoxicity potential of particles using peripheral blood mononuclear cells (PBMNCs) from individual human donors. Irrespective of the particle size, silicon nitride did not cause any adverse responses whereas cobalt-chromium wear particles caused donor-dependent cytotoxicity, TNF-α cytokine release, oxidative stress, and DNA damage in PBMNCs after 24 h. Despite being similar in size and morphology, silicon dioxide nanoparticles caused the release of significantly higher levels of TNF-α compared to silicon nitride nanoparticles, suggesting that surface composition influences the inflammatory response in PBMNCs. Ti-6Al-4V wear particles also released significantly elevated levels of TNF-α cytokine in one of the donors. This study demonstrated that silicon nitride is an attractive orthopaedic biomaterial due to its minimal biological impact on human PBMNCs.
a b s t r a c t Less than optimal particle isolation techniques have impeded analysis of orthopaedic wear debris in vivo. The purpose of this research was to develop and test an improved method for particle isolation from tissue. A volume of 0.018 mm 3 of clinically relevant CoCrMo, Ti-6Al-4V or Si 3 N 4 particles was injected into rat stifle joints for seven days of in vivo exposure. Following sacrifice, particles were located within tissues using histology. The particles were recovered by enzymatic digestion of periarticular tissue with papain and proteinase K, followed by ultracentrifugation using a sodium polytungstate density gradient. Particles were recovered from all samples, observed using SEM and the particle composition was verified using EDX, which demonstrated that all isolated particles were free from contamination. Particle size, aspect ratio and circularity were measured using image analysis software. There were no significant changes to the measured parameters of CoCrMo or Si 3 N 4 particles before and after the recovery process (KS tests, p > 0.05). Titanium particles were too few before and after isolation to analyse statistically, though size and morphologies were similar. Overall the method demonstrated a significant improvement to current particle isolation methods from tissue in terms of sensitivity and efficacy at removal of protein, and has the potential to be used for the isolation of ultra-low wearing total joint replacement materials from periprosthetic tissues.
Statement of SignificanceThis research presents a novel method for the isolation of wear particles from tissue. Methodology outlined in this work would be a valuable resource for future researchers wishing to isolate particles from tissues, either as part of preclinical testing, or from explants from patients for diagnostic purposes. It is increasingly recognised that analysis of wear particles is critical to evaluating the safety of an orthopaedic device.
A novel particle isolation method for tissue samples was developed and tested using particle-doped peri-articular tissues from ovine cadavers. This enabled sensitivity of the isolation technique to be established by doping tissue samples of 0.25 g with very low particle volumes of 2.5 µm3 per sample. Image analysis was used to verify that the method caused no changes to particle size or morphologies.
The average recovery rate of silicon nitride nanoparticles isolated from serum using the method detailed in previous article “A novel method for isolation and recovery of ceramic nanoparticles and metal wear debris from serum lubricants at ultra-low wear rate” (Lal et al., 2016) [1] was tested gravimetrically by weighing particles doped into serum before and after the isolation process. An average recovery rate of approximately 89.6% (± 7.1 SD) was achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.