Resistin is a small secretory protein that has a pleiotropic role in rodents and humans. Both rodent resistin and human resistin have an extremely stable and high-order multimeric structure. Moreover, there is significant variation in the source of secretion and the diversity of functions of resistin. Mouse resistin resists insulin action and contributes to type 2 diabetes mellitus, while human resistin plays a role in inflammation and also functions as a small accessory chaperone. Currently, active research in the area identified a significant role for resistin in stress biology and as a biomarker in diagnostics to evaluate disease status and treatment outcome. This review summarizes recent developments within resistin biology including their association with obesity, inflammation, stress response mechanisms, and its role in clinical diagnostics.
Objectives: Convalescent plasma (CP) as a passive source of neutralizing antibodies and immunomodulators is a century-old therapeutic option used for the management of viral diseases. We investigated its effectiveness for the treatment of COVID-19. Design: Open-label, parallel-arm, phase II, multicentre, randomized controlled trial. Setting: Thirty-nine public and private hospitals across India. Participants: Hospitalized, moderately ill confirmed COVID-19 patients (PaO2/FiO2: 200-300 or respiratory rate > 24/min and SpO2 ≤ 93% on room air). Intervention: Participants were randomized to either control (best standard of care (BSC)) or intervention (CP + BSC) arm. Two doses of 200 mL CP was transfused 24 hours apart in the intervention arm. Main Outcome Measure: Composite of progression to severe disease (PaO2/FiO2<100) or all-cause mortality at 28 days post-enrolment. Results: Between 22 nd April to 14 th July 2020, 464 participants were enrolled; 235 and 229 in intervention and control arm, respectively. Composite primary outcome was achieved in 44 (18.7%) participants in the intervention arm and 41 (17.9%) in the control arm [aOR: 1.09; 95% CI: 0.67, 1.77]. Mortality was documented in 34 (13.6%) and 31 (14.6%) participants in intervention and control arm, respectively [aOR) 1.06 95% CI: -0.61 to 1.83]. Interpretation: CP was not associated with reduction in mortality or progression to severe COVID-19. This trial has high generalizability and approximates real-life setting of CP therapy in settings with limited laboratory capacity. A priori measurement of neutralizing antibody titres in donors and participants may further clarify the role of CP in management of COVID-19.
Helicobacter pylori and Epstein-Barr virus (EBV) are two well-known contributors to cancer and can establish lifelong persistent infection in the host. This leads to chronic inflammation, which also contributes to development of cancer. Association with H. pylori increases the risk of gastric carcinoma, and coexistence with EBV enhances proliferation of infected cells. Further, H. pylori-EBV coinfection causes chronic inflammation in pediatric patients. We have established an H. pylori-EBV coinfection model system using human gastric epithelial cells. We showed that H. pylori infection can increase the oncogenic phenotype of EBV-infected cells and that the cytotoxin-associated gene (CagA) protein encoded by H. pylori stimulated EBV-mediated cell proliferation in this coinfection model system. This led to increased expression of DNA methyl transferases (DNMTs), which reprogrammed cellular transcriptional profiles, including those of tumor suppressor genes (TSGs), through hypermethylation. These findings provide new insights into a molecular mechanism whereby cooperativity between two oncogenic agents leads to enhanced oncogenic activity of gastric cancer cells.
Coronavirus disease 2019 (COVID‐19) has been shown to be associated with a lot of neurological complications, of whom Guillain‐Barre syndrome (GBS) is an important post‐infectious consequentiality. More than 220 patients with GBS have been reported thus far. We intend to share our experience with five patients of GBS where one of them had severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) in the cerebrospinal fluid (CSF). This is the first‐ever report demonstrating the presence of SARS‐CoV‐2 in the CSF of an adult patient; a similar occurrence has recently been described in a pediatric patient. We wish to emphasize the fact that commonly GBS occurs as a result of a post‐infectious process but in a few cases where the symptoms of COVID‐19 and GBS occur concurrently, corresponding to the viremic phase, separate pathogenesis needs to be thought of. This para‐infectious nature is exemplified by the presence of virus in the cerebrospinal fluid of one of our patients. We review the neuroinvasive potential of SARS‐Cov‐2 in this regard and draw parallels with Cytomegalovirus, Zika virus, and Human Immunodeficiency virus‐associated occurrences of GBS.
Resistin, a cysteine-rich adipocytokine, proposed as a link between obesity and diabetes in mice, was shown as a proinflammatory molecule in humans. We earlier reported that human resistin (hRes), a trimer, was resistant to heat and urea denaturation, existed in an oligomeric polydispersed state, and showed a concentrationdependent conformational change. These properties and an intimate correlation of hRes expression with cellular stress prompted us to investigate hRes as a possible chaperone. Here, we show that recombinant human resistin was able to protect the heat-labile enzymes citrate synthase and Nde1 from thermal aggregation and inactivation and was able to refold and restore their enzymatic activities after heat/guanidinium chloride denaturation. Furthermore, recombinant human resistin could bind misfolded proteins only. Molecular dynamics-based association-dissociation kinetics of hRes subunits pointed to resistin being a molecular chaperone. Bis-ANS, which blocks surface hydrophobicity, abrogated the chaperone activity of hRes, establishing the importance of surface hydrophobicity for chaperone activity. Replacement of Phe49 with Tyr (F49YhRes), a critical residue within the hydrophobic patch of hRes, although it could prevent thermal aggregation of citrate synthase and Nde1, was unable to refold and restore their activities. Treatment of U937 cells with tunicamycin/thapsigargin resulted in reduced hRes secretion and concomitant localization in the endoplasmic reticulum. Escherichia coli transformants expressing hRes could be rescued from thermal stress, pointing to hRes's chaperone-like function in vivo. HeLa cells transfected with hRes showed protection from thapsigargin-induced apoptosis. In conclusion, hRes, an inflammatory protein, additionally exhibited chaperone-like properties, suggesting a possible link between inflammation and cellular stress.protein folding | chaperokine R esistin, a small cysteine-rich secreted protein, is predominantly produced in human macrophages (1, 2). Resistin levels in human serum could neither be associated with obesity nor linked with insulin resistance (3), pointing to possible other role(s) for this hormone. We, and later others, showed that human resistin (hRes) is a proinflammatory molecule that stimulates the synthesis and secretion of TNF-α and IL-12 from macrophages through an NF-κB-activated pathway (4, 5). hRes mRNA levels are strongly induced by TNF-α and IL-6 in human peripheral blood mononuclear cells (6, 7). Although human and mouse resistin share 64.4 and 59% sequence homology at mRNA and amino acids levels, respectively, they differ considerably in terms of their structural organization (8). We earlier reported, based on extensive biophysical analyses, that recombinant human resistin (rhRes) is a highly stable molecule that exists in oligomeric states as a function of concentration with no major loss in helicity and displays slightly altered tertiary structure with an increase in temperature (9, 10). The variable oligomeric states and poly-dispersity...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.