Abstract. Scaling of pressure spectrum in zero-pressure-gradient turbulent boundary layers is discussed. Spatial DNS data of boundary layer at one time instant (Re θ = 4500) are used for the analysis. It is observed that in the outer regions the pressure spectra tends towards the -7/3 law predicted by Kolmogorov's theory of small-scale turbulence. The slope in the pressure spectra varies from -1 close to the wall to a value close to -7/3 in the outer region. The streamwise velocity spectra also show a -5/3 trend in the outer region of the flow. The exercise carried out to study the amplitude modulation effect of the large scales on the smaller ones in the near-wall region reveals a strong modulation effect for the streamwise velocity, but not for the pressure fluctuations. The skewness of the pressure follows the same trend as the amplitude modulation coefficient, as is the case for the velocity. In the inner region, pressure spectra were seen to collapse better when normalized with the local Reynolds stress (−u ′ v ′ ) than when scaled with the local turbulent kinetic energy (q 2 = u ′2 + v ′2 + w ′2 )
Emission standard agencies are coming up with more stringent regulations on Nitrogen Oxides (NOx), given their adverse effect on the environment. The aircraft engines operate at varying operating conditions and temperature-dependent emissions like NOx are significantly affected by varying conditions. Computational Fluid Dynamics (CFD) simulations are playing a key role in the design of gas turbine combustors and an accurate NOx model will be an important tool for the designers. The new stringent regulations will require new computational approaches over the traditional methods so that the NOx can be predicted accurately under a wide range of operating conditions.
Traditionally, the high temperature NOx is predicted using a three-step Zeldovich mechanism. However, it has been observed that the NO (Nitrogen oxide) mass fraction predicted by the Zeldovich mechanism is not accurate for low power conditions due to its predominantly high-temperature kinetics. A significant amount of NO2 (Nitrogen dioxide) is observed in the experimental data at lower temperatures. This requires the inclusion of NO2 chemistry in the NOx mechanism. With the increase in the available computational power, a detailed chemistry simulation is gaining attention, especially for pollutant prediction. In this work, we explore the finite rate (FR) chemistry approach for the prediction of total NOx (NO + NO2) in a gas turbine combustor designed for Aerospace applications. Two reduced mechanisms are investigated namely, the PERK mechanism with 31 species and the Hychem mechanism with 71 species. Simulations with both mechanisms show good comparison with the experimental data and predict the individual contribution of NO and NO2 reasonably well. Further, it is observed that the spray breakup model has a significant impact on the NOx prediction, and it is important to capture the fuel spray correctly to predict the right amount of NOx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.