The terahertz part of the electromagnetic spectrum possesses numerous promising applications such as high-speed wireless communication, security screening, chemical identification, and nondestructive biosensing. [1] However, the terahertz spectral region has remained technologically uncharted, due to the lack of efficient devices to generate, manipulate, and detect terahertz waves. In the past decade, there has been a significant progress in active control of terahertz waves using metamaterials integratedThe strikingly contrasting optical properties of various phases of chalcogenide phase change materials (PCM) has recently led to the development of novel photonic devices such as all-optical non-von Neumann memory, nanopixel displays, color rendering, and reconfigurable nanoplasmonics. However, the exploration of chalcogenide photonics is currently limited to optical and infrared frequencies. Here, a phase change material integrated terahertz metamaterial for multilevel nonvolatile resonance switching with spatial and temporal selectivity is demonstrated. By controlling the crystalline proportion of the PCM film, multilevel, non-volatile, terahertz resonance switching states with long retention time at zero hold power are realized. Spatially selective reconfiguration at submetamaterial scale is shown by delivering electrical stimulus locally through designer interconnect architecture. The PCM metamaterial also features ultrafast optical modulation of terahertz resonances with tunable switching speed based on the crystalline order of the PCM film. The multilevel nonvolatile, spatially selective, and temporally tunable PCM metamaterial will provide a pathway toward development of novel and disruptive terahertz technologies including spatio-temporal terahertz modulators for high speed wireless communication, neuromorphic photonics, and machine-learning metamaterials.
Phase change materials provide unique reconfigurable properties for photonic applications that mainly arise from their exotic characteristic to reversibly switch between the amorphous and crystalline nonvolatile phases. Optical pulse based reversible switching of nonvolatile phases is exploited in various nanophotonic devices. However, large area reversible switching is extremely challenging and has hindered its translation into a technologically significant terahertz spectral domain. Here, this limitation is circumvented by exploiting the semiconducting nature of germanium antimony telluride (GST) to achieve dynamic terahertz control at picosecond timescales. It is also shown that the ultrafast response can be actively altered by changing the crystallographic phase of GST. The ease of fabrication of phase change materials allows for the realization of a variable ultrafast terahertz modulator on a flexible platform. The rich properties of phase change materials combined with the diverse functionalities of metamaterials and all-optical ultrafast control enables an ideal platform for design of efficient terahertz communication devices, terahertz neuromorphic photonics, and smart sensor systems.
Spatiotemporal manipulation of electromagnetic waves has recently enabled a plethora of exotic optical functionalities, such as non‐reciprocity, dynamic wavefront control, unidirectional transmission, linear frequency conversion, and electromagnetic Doppler cloak. Here, an additional dimension is introduced for advanced manipulation of terahertz waves in the space‐time, and frequency domains through integration of spatially reconfigurable microelectromechanical systems and photoresponsive material into metamaterials. A large and continuous frequency agility is achieved through movable microcantilevers. The ultrafast resonance modulation occurs upon photoexcitation of ion‐irradiated silicon substrate that hosts the microcantilever metamaterial. The fabricated metamaterial switches in 400 ps and provides large spectral tunability of 250 GHz with 100% resonance modulation at each frequency. The integration of perfectly complementing technologies of microelectromechanical systems, femtosecond optical control and ion‐irradiated silicon provides unprecedented concurrent control over space, time, and frequency response of metamaterial for designing frequency‐agile spatiotemporal modulators, active beamforming, and low‐power frequency converters for the next generation terahertz wireless communications.
Antiferromagnetic insulators are a ubiquitous class of magnetic materials, holding the promise of low-dissipation spin-based computing devices that can display ultra-fast switching and are robust against stray fields. However, their imperviousness to magnetic fields also makes them difficult to control in a reversible and scalable manner. Here we demonstrate a novel proof-of-principle ionic approach to control the spin reorientation (Morin) transition reversibly in the common antiferromagnetic insulator α-Fe2O3 (haematite) – now an emerging spintronic material that hosts topological antiferromagnetic spin-textures and long magnon-diffusion lengths. We use a low-temperature catalytic-spillover process involving the post-growth incorporation or removal of hydrogen from α-Fe2O3 thin films. Hydrogenation drives pronounced changes in its magnetic anisotropy, Néel vector orientation and canted magnetism via electron injection and local distortions. We explain these effects with a detailed magnetic anisotropy model and first-principles calculations. Tailoring our work for future applications, we demonstrate reversible control of the room-temperature spin-state by doping/expelling hydrogen in Rh-substituted α-Fe2O3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.