In large-scale distributed computing clusters, such as Amazon EC2, there are several types of "system noise" that can result in major degradation of performance: system failures, bottlenecks due to limited communication bandwidth, latency due to straggler nodes, etc. On the other hand, these systems enjoy abundance of redundancy -a vast number of computing nodes and large storage capacity. There have been recent results that demonstrate the impact of coding for efficient utilization of computation and storage redundancy to alleviate the effect of stragglers and communication bottlenecks in homogeneous clusters. In this paper, we focus on general heterogeneous distributed computing clusters consisting of a variety of computing machines with different capabilities. We propose a coding framework for speeding up distributed computing in heterogeneous clusters by trading redundancy for reducing the latency of computation. In particular, we propose Heterogeneous Coded Matrix Multiplication (HCMM) algorithm for performing distributed matrix multiplication over heterogeneous clusters that is provably asymptotically optimal for a broad class of processing time distributions. Moreover, we show that HCMM is unboundedly faster than uncoded schemes that partition the total work load among the workers. To demonstrate how the proposed HCMM scheme can be applied in practice, we provide numerical results demonstrating significant speedups of up to 90% and 35% for HCMM in comparison to the "uncoded" and "coded homogeneous" schemes, respectively. Furthermore, we carry out real experiments over Amazon EC2 clusters that corroborate our numerical studies, where HCMM is found to be up to 17% faster than the uncoded scheme. Additionally, our observation is that machines rarely become stragglers and when they do, they continue to exhibit slower performance for sometime. In our worst case experiments with artificial stragglers, HCMM provides speedups of up to 12× over the uncoded scheme. Furthermore, we provide a generalization of the problem of optimal load allocation for heterogeneous clusters to scenarios with budget constraints and develop a heuristic algorithm for efficient load allocation. In the end, we discuss about the decoding complexity and describe how LDPC codes can be combined with HCMM in order to control the complexity of decoding as the problem size increases.
Federated learning enables training a global model from data located at the client nodes, without data sharing and moving client data to a centralized server. Performance of federated learning in a multi-access edge computing (MEC) network suffers from slow convergence due to heterogeneity and stochastic fluctuations in compute power and communication link qualities across clients. We propose a novel coded computing framework, CodedFedL, that injects structured coding redundancy into federated learning for mitigating stragglers and speeding up the training procedure. CodedFedL enables coded computing for non-linear federated learning by efficiently exploiting distributed kernel embedding via random Fourier features that transforms the training task into computationally favourable distributed linear regression. Furthermore, clients generate local parity datasets by coding over their local datasets, while the server combines them to obtain the global parity dataset. Gradient from the global parity dataset compensates for straggling gradients during training, and thereby speeds up convergence. For minimizing the epoch deadline time at the MEC server, we provide a tractable approach for finding the amount of coding redundancy and the number of local data points that a client processes during training, by exploiting the statistical properties of compute as well as communication delays. We also characterize the leakage in data privacy when clients share their local parity datasets with the server. Additionally, we analyze the convergence rate and iteration complexity of CodedFedL under simplifying assumptions, by treating CodedFedL as a stochastic gradient descent algorithm. Finally, for demonstrating gains that CodedFedL can achieve in practice, we conduct numerical experiments using practical network parameters and benchmark datasets, in which CodedFedL speeds up the overall training time by up to 15× in comparison to the benchmark schemes.
Federated learning is a method of training a global model from decentralized data distributed across client devices. Here, model parameters are computed locally by each client device and exchanged with a central server, which aggregates the local models for a global view, without requiring sharing of training data. The convergence performance of federated learning is severely impacted in heterogeneous computing platforms such as those at the wireless edge, where straggling computations and communication links can significantly limit timely model parameter updates. This paper develops a novel coded computing technique for federated learning to mitigate the impact of stragglers. In the proposed Coded Federated Learning (CFL) scheme, each client device privately generates parity training data and shares it with the central server only once at the start of the training phase. The central server can then preemptively perform redundant gradient computations on the composite parity data to compensate for the erased or delayed parameter updates. Our results show that CFL allows the global model to converge nearly four times faster when compared to an uncoded approach.
In large-scale distributed computing clusters, such as Amazon EC2, there are several types of "system noise" that can result in major degradation of performance: system failures, bottlenecks due to limited communication bandwidth, latency due to straggler nodes, etc. On the other hand, these systems enjoy abundance of redundancy -a vast number of computing nodes and large storage capacity. There have been recent results that demonstrate the impact of coding for efficient utilization of computation and storage redundancy to alleviate the effect of stragglers and communication bottlenecks in homogeneous clusters. In this paper, we focus on general heterogeneous distributed computing clusters consisting of a variety of computing machines with different capabilities. We propose a coding framework for speeding up distributed computing in heterogeneous clusters by trading redundancy for reducing the latency of computation. In particular, we propose Heterogeneous Coded Matrix Multiplication (HCMM) algorithm for performing distributed matrix multiplication over heterogeneous clusters that is provably asymptotically optimal for a broad class of processing time distributions. Moreover, we show that HCMM is unboundedly faster than any uncoded scheme that partitions the total work load among the workers. To demonstrate how the proposed HCMM scheme can be applied in practice, we provide results from numerical studies and Amazon EC2 experiments comparing HCMM with three benchmark load allocation schemes -Uniform Uncoded, Load-balanced Uncoded, and Uniform Coded. In particular, in our numerical studies, HCMM achieves speedups of up to 73%, 56% and 42% respectively over the three benchmark schemes mentioned above. Furthermore, we carry out experiments over Amazon EC2 clusters and demonstrate how HCMM can be combined with rateless codes with nearly linear decoding complexity. In particular, we show that HCMM combined with the Luby transform (LT) codes can significantly reduce the overall execution time. HCMM is found to be up to 61%, 46% and 36% faster than the aforementioned three benchmark schemes, respectively. Additionally, we provide a generalization to the problem of optimal load allocation in heterogeneous settings, where we take into account the monetary costs associated with distributed computing clusters. We argue that HCMM is asymptotically optimal for budget-constrained scenarios as well. In particular, we characterize the minimum possible expected cost associated with a computation task over a given cluster of machines. Furthermore, we develop a heuristic algorithm for (HCMM) load allocation for the distributed implementation of budget-limited computation tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.