Background The [177Lu]Lu-DOTA-TATE mediated peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NETs) is sometimes leading to treatment resistance and disease recurrence. An interesting alternative could be the somatostatin antagonist, [177Lu]Lu-DOTA-JR11, that demonstrated better biodistribution profile and higher tumor uptake than [177Lu]Lu-DOTA-TATE. Furthermore, treatment with alpha emitters showed improvement of the therapeutic index of PRRT due to the high LET offered by the alpha particles compared to beta emitters. Therefore, [225Ac]Ac-DOTA-JR11 can be a potential candidate to improve the treatment of NETs (Graphical abstract). DOTA-JR11 was radiolabeled with [225Ac]Ac(NO3)3 and [177Lu]LuCl3. Stability studies were performed in phosphate buffered saline (PBS) and mouse serum. In vitro competitive binding assay has been carried out in U2OS-SSTR2 + cells for natLa-DOTA-JR11, natLu-DOTA-JR11 and DOTA-JR11. Ex vivo biodistribution studies were performed in mice inoculated with H69 cells at 4, 24, 48 and 72 h after injection of [225Ac]Ac-DOTA-JR11. A blocking group was included to verify uptake specificity. Dosimetry of selected organs was determined for [225Ac]Ac-DOTA-JR11 and [177Lu]Lu-DOTA-JR11. Results [225Ac]Ac-DOTA-JR11 has been successfully prepared and obtained in high radiochemical yield (RCY; 95%) and radiochemical purity (RCP; 94%). [225Ac]Ac-DOTA-JR11 showed reasonably good stability in PBS (77% intact radiopeptide at 24 h after incubation) and in mouse serum (~ 81% intact radiopeptide 24 h after incubation). [177Lu]Lu-DOTA-JR11 demonstrated excellent stability in both media (> 93%) up to 24 h post incubation. Competitive binding assay revealed that complexation of DOTA-JR11 with natLa and natLu did not affect its binding affinity to SSTR2. Similar biodistribution profiles were observed for both radiopeptides, however, higher uptake was noticed in the kidneys, liver and bone for [225Ac]Ac-DOTA-JR11 than [177Lu]Lu-DOTA-JR11. Conclusion [225Ac]Ac-DOTA-JR11 showed a higher absorbed dose in the kidneys compared to [177Lu]Lu-DOTA-JR11, which may limit further studies with this radiopeptide. However, several strategies can be explored to reduce nephrotoxicity and offer opportunities for future clinical investigations with [225Ac]Ac-DOTA-JR11.
Somatostatin receptor subtype 2 (SSTR2) has become an essential target for radionuclide therapy of neuroendocrine tumors (NETs). JR11 was introduced as a promising antagonist peptide to target SSTR2. However, due to its rapid blood clearance, a better pharmacokinetic profile is necessary for more effective treatment. Therefore, two JR11 analogs (8a and 8b), each carrying an albumin binding domain, were designed to prolong the blood residence time of JR11. Both compounds were labeled with lutetium-177 and evaluated via in vitro assays, followed by in vivo SPECT/CT imaging and ex vivo biodistribution studies. [177Lu]Lu-8a and [177Lu]Lu-8b were obtained with high radiochemical purity (>97%) and demonstrated excellent stability in PBS and mouse serum (>95%). [177Lu]Lu-8a showed better affinity towards human albumin compared to [177Lu]Lu-8b. Further, 8a and 8b exhibited binding affinities 30- and 48-fold lower, respectively, than that of the parent peptide JR11, along with high cell uptake and low internalization rate. SPECT/CT imaging verified high tumor accumulation for [177Lu]Lu-8a and [177Lu]Lu-JR11 at 4, 24, 48, and 72 h post-injection, but no tumor uptake was observed for [177Lu]Lu-8b. Ex vivo biodistribution studies revealed high and increasing tumor uptake for [177Lu]Lu-8a. However, its extended blood circulation led to an unfavorable biodistribution profile for radionuclide therapy.
Prostate-specific membrane antigen (PSMA) targeting radiopharmaceuticals have been successfully used for diagnosis and therapy of prostate cancer. Optimization of the available agents is desirable to improve tumor uptake and reduce side effects to non-target organs. This can be achieved, for instance, via linker modifications or multimerization approaches. In this study, we evaluated a small library of PSMA-targeting derivatives with modified linker residues, and selected the best candidate based on its binding affinity to PSMA. The lead compound was coupled to a chelator for radiolabeling, and subject to dimerization. The resulting molecules, 22 and 30, were highly PSMA specific (IC50 = 1.0–1.6 nM) and stable when radiolabeled with indium-111 (>90% stable in PBS and mouse serum up to 24 h). Moreover, [111In]In-30 presented a high uptake in PSMA expressing LS174T cells, with 92.6% internalization compared to 34.1% for PSMA-617. Biodistribution studies in LS174T mice xenograft models showed that [111In]In-30 had a higher tumor and kidney uptake compared to [111In]In-PSMA-617, but increasing T/K and T/M ratios at 24 h p.i. Tumors could be clearly visualized at 1 h p.i. by SPECT/CT after administration of [111In]In-22 and [111In]In-PSMA-617, while [111In]In-30 showed a clear signal at later time-points (e.g., 24 h p.i.).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.