Cells operate in ever changing environments using extraordinary communication capabilities that emerge from the interactions of genetic circuitry. The mammalian immune response is a striking example of the coordination of different cell types.1 Cell-to-cell communication is primarily mediated by signaling molecules that form spatiotemporal concentration gradients, requiring cells to respond to a wide range of signal intensities. Here we use high-throughput microfluidic cell culture, quantitative gene expression analysis and mathematical modeling to investigate how single mammalian cells respond to different concentrations of the signaling molecule TNF-α, and relay information to the gene expression programs via the transcription factor NF-κB. We measured NF-κB activity in thousands of live cells under TNF-α doses covering four orders of magnitude. We find, in contrast to population studies, that the activation is heterogeneous and is a digital process at the single cell level with fewer cells responding at lower doses. Cells also encode a subtle set of analog parameters to modulate the outcome; these parameters include NF-κB peak intensity, response time and number of oscillations. We developed a mathematical model that reproduces both the digital and analog dynamics as well as the most gene expression profiles at all measured conditions, constituting a broadly applicable model for TNF-α induced NF-κB signaling in various types of cells. These results highlight the value of high-throughput quantitative measurements at the single-cell level in understanding how biological systems operate.
Cells must respond sensitively to time-varying inputs in complex signaling environments. To understand how signaling networks process dynamic inputs into gene expression outputs and the role of noise in cellular information processing, we studied the immune pathway NF-κB under periodic cytokine inputs using microfluidic single-cell measurements and stochastic modeling. We find that NF-κB dynamics in fibroblasts synchronize with oscillating TNF signal and become entrained, leading to significantly increased NF-κB oscillation amplitude and mRNA output compared to non-entrained response. Simulations show that intrinsic biochemical noise in individual cells improves NF-κB oscillation and entrainment, whereas cell-to-cell variability in NF-κB natural frequency creates population robustness, together enabling entrainment over a wider range of dynamic inputs. This wide range is confirmed by experiments where entrained cells were measured under all input periods. These results indicate that synergy between oscillation and noise allows cells to achieve efficient gene expression in dynamically changing signaling environments.
Holographic three-dimensional (3D) displays provide realistic images without the need for special eyewear, making them valuable tools for applications that require situational awareness, such as medical, industrial and military imaging. Currently commercially available holographic 3D displays use photopolymers that lack image-updating capability, resulting in restricted use and high cost. Photorefractive polymers are dynamic holographic recording materials that allow updating of images and have a wide range of applications, including optical correlation, imaging through scattering media and optical communication. To be suitable for 3D displays, photorefractive polymers need to have nearly 100% diffraction efficiency, fast writing time, hours of image persistence, rapid erasure, and large area-a combination of properties that has not been shown before. Here, we report an updatable holographic 3D display based on photorefractive polymers with such properties, capable of recording and displaying new images every few minutes. This is the largest photorefractive 3D display to date (4 x 4 inches in size); it can be recorded within a few minutes, viewed for several hours without the need for refreshing, and can be completely erased and updated with new images when desired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.