The study aimed to estimate and characterise soil organic matter under different land uses (cropland, grassland, and forest) and soil depths. The soil organic matter composition of the soil was assessed by diffuse reflectance infrared spectroscopy (DRIFT). Humic and fulvic acids (HAs, FAs) were extracted from soils and their compositions were evaluated by DRIFT. Low molecular mass organic acids content was also measured. Our result revealed that the largest differences of the spectra in the composition of organic matter were observed in the upper parts of the soil profile. The forest soil spectra had more intense aliphatic bands, carboxylic, and CH bands than spectra of grassland and cropland soils. The difference of HAs spectra was at 3 010 to 2 800/cm where the most intensive aliphatic bands were in forest soil HAs, followed by grassland and cropland soil HAs. The grassland topsoil FAs spectrum differs most from the other land uses. It has lower peaks around 1 660–1 600/cm and 1 200/cm than cropland and forest. The concentration of low molecular mass organic acid (LMMOA) was the highest in the forest soil and the most abundant acid was citrate.
Soil aggregates have great effects on soil properties and soil functions. Mulching (organic inputs) has been known as a factor influencing soil aggregate stability. Our study aimed to reveal the causes of the higher stability of soil aggregates under organic mulches. The primary soil characteristics such as organic carbon (Cox), humus quality (E4/E6), potential wettability index (PWI), and aromaticity index (iAR) were determined. The Cox was measured using rapid dichromate oxidation, and E4/E6 was measured using the UV-Vis spectrophotometry. The PWI and iAR were determined according to the intensity of selected bands in diffuse reflectance infrared spectra. Results showed that mulched plots contained higher Cox content in aggregates in comparison with whole soil. This indicates that the carbon was stabilized within the aggregates and sequestrated into the soil. The iAR was significantly higher after using the organic mulches, the aliphatic components of the organic matter thus contribute more to the aggregates stabilization. The PWI of aggregates was found to be higher after applying these mulches than in soil. Organic mulches are therefore able to reduce the wettability of the aggregates and also to protect the aggregate from dispersion with water.
The study aimed to investigate the temporal changes of pH, sorption complex, and structure of soil organic matter through the forest soil profile under beech and spruce forests located in Jizera mountains (Czech Republic) and affected by natural and anthropogenic acidification. Soil samples were collected in four different years (2008, 2013, 2015, and 2020) in each horizon: fermented horizons (F), humified horizons (H), organo-mineral horizons (A), and subsurface mineral horizons (B) (cambic or spodic). The cation exchange capacity (CEC), base saturation (BS), exchangeable element contents, pH, and soil organic carbon content (SOC) were determined. The infrared soil spectra were used to calculate indices of potential wettability, aromaticity, and decomposition. Our results showed that most nutrients and aliphatic compounds were retained in the uppermost soil layers. The aromaticity of organic matter increased with depth, while polysaccharides, regarding the decomposition compound, disappeared through the soil horizons. In a long-term observation, SOC content had constantly increased under beech, while spruce remained stable in the organic horizons. Exchangeable element contents increased in each horizon, except for Al and Fe; their content quickly decreased in F horizons and slowly decreased in H horizon under both forest tree species, while the deeper horizons remained constant, but increased in A horizon under spruce. Continuously increasing base cations concentrations in sorption complex of both forest tree species during the study period revealed the effect of forest stand types on acid deposition reduction and mitigation. The temporal changes in CEC, BS, SOC, and soil wettability are more intensive in beech than in spruce forest floor.
<p>Soil organic matter (SOM) plays vital importance for biological, chemical, and physical soil improvement and productivity. Organic matter composition also depends on different types of vegetation covers. Thus the study was aimed to estimate and characterize the soil organic matter (SOM) under different land uses (cropland, grassland, and forestland) and depths (0-10 cm, 10-20 cm, and 20-30 cm) in Prague Suchdol. Ninety samples of disturbed soil were collected within different land uses and within different depths. The soil organic matter (SOM) composition was assessed by diffuse reflectance infrared fourier transform spectroscopy (DRIFT). Humic and fulvic acid were extracted from soils and their composition was also assessed by DRIFT. Additionally, dissolved organic carbon (DOC), humus quality as ratio between absorbances of soil extract with sodium pyrophosphate at the wavelengths 400 and 600 nm, soil organic carbon (by the rapid dichromate oxidation technique), were determined on the samples as well as physical characteristics as bulk density. The data were analysed statistically by statistical package for the social sciences (SPSS) version 20. The results indicated that pH<sub>KCl</sub> is significantly different among land uses. Cropland had the highest values of pH<sub>KCl</sub> with a range from 7.76 to 6.86, followed by grassland with a range from 5.72 to 5.93 and forestland with 3.34 to 3.65, respectively. However, the humus quality was significantly different for all depths where forestland had the lowest humus quality compared to grassland and cropland, respectively. The soil organic carbon deviates statistically in depth 0-10 cm and 20-30 cm, while the depth in between from 10 to 20 cm showed no substantial difference among the land uses. Nonetheless, the result revealed that the largest differences of the spectra in the composition of organic matter were observed in the upper parts of the soil profile. The forest soil spectra had more intense aliphatic bands, carboxylic, and CH bands than spectra of grassland and cropland soils. The difference of HAs spectra was at 3 010 to 2 800 cm<sup>-1</sup> where the most intensive aliphatic bands were in forest soil HAs, followed by grassland and cropland soil HAs. The grassland topsoil FAs spectrum differs most from the other land uses. It has lower peaks around 1 660&#8211;1 600 cm<sup>-1</sup> and 1 200 cm<sup>-1</sup> than cropland and forest. The concentration of low molecular mass organic acid (LMMOA) was the highest in the forest soil and the most abundant acid was citrate.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.