In brain and peripheral tissues, steroid hormones regulate nitric oxide synthase (nNOS). We asked whether estrogen receptor-alpha (ERalpha) and/or androgen receptor (AR) regulated nNOS immunoreactivity in mouse brain. First, we quantified cells singly labeled for nNOS immunoreactivity or labeled dually with ERalpha-immunoreactive (-ir) or AR-ir cells in the nucleus accumbens (Acb), preoptic area (POA), bed nucleus of the stria terminalis (BNST), posterior dorsal and posterior ventral regions of the medial amygdala (MePD and MePV, respectively), and paraventricular nucleus (PVN). The POA and MePD contained the greatest number of double-labeled cells. More nNOS-ir cells were colabeled with ERalpha immunoreactivity compared with AR immunoreactivity. Next, by using a double mutant mouse in which males lacked functional ERalpha, AR, or both, we investigated the roles of these steroid receptors in nNOS-ir cell numbers and immunoreactive area staining under testosterone (T) and estradiol (E2) conditions. Our data show that functional ERalpha is correlated with more nNOS-ir cells under T conditions and more immunoreactive area staining in the POA under both T and E2 conditions. However, ERalpha decreases nNOS-ir cell number in the BNST under E2 treatment. In summary, the data suggest that AR has organizational actions on nNOS-ir cell numbers in the MePV, that interactions between ERalpha and AR genes occur in PVN, and that sex differences in nNOS-ir area staining are limited to the POA. Thus, we show that ERalpha and AR interact to regulate nNOS in male and female brain in a site-specific manner.
SignificanceThe early life environment can exert a profound effect on long-term health. However, differences in developmental epigenetic patterns in response to environmental challenges are not well understood in humans, where nutrient insufficiency and pathogen exposure in early infancy can impact immune system function and metabolic health into adulthood. Here we report a comprehensive global picture of the patterns of the epigenetic modification histone H3 lysine 4 trimethylation (H3K4me3) in undernourished infants and their mothers. Comparisons of the emergent patterns of H3K4me3 within the first year of life reveal large-scale changes consistent with the impact of a poor environment, and uncovered a candidate gene with a role in the response, which was validated in a mouse model.
Modifier of transcription 1 (Mot1) is a conserved and essential Swi2/Snf2 ATPase that can remove TATA-binding protein (TBP) from DNA using ATP hydrolysis and in so doing exerts global effects on transcription. Spt16 is also essential and functions globally in transcriptional regulation as a component of the facilitates chromatin transcription (FACT) histone chaperone complex. Here we demonstrate that Mot1 and Spt16 regulate a largely overlapping set of genes in Saccharomyces cerevisiae. As expected, Mot1 was found to control TBP levels at co-regulated promoters. In contrast, Spt16 did not affect TBP recruitment. On a global scale, Spt16 was required for Mot1 promoter localization, and Mot1 also affected Spt16 localization to genes. Interestingly, we found that Mot1 has an unanticipated role in establishing or maintaining the occupancy and positioning of nucleosomes at the 5 ends of genes. Spt16 has a broad role in regulating chromatin organization in gene bodies, including those nucleosomes affected by Mot1. These results suggest that the large scale overlap in Mot1 and Spt16 function arises from a combination of both their unique and shared functions in transcription complex assembly and chromatin structure regulation.
Formaldehyde-cross-linking underpins many of the most commonly used experimental approaches in the chromatin field, especially in capturing site-specific protein-DNA interactions. Extending such assays to assess the stability and binding kinetics of protein-DNA interactions is more challenging, requiring absolute measurements with a relatively high degree of physical precision. We previously described an experimental framework called the cross-linking kinetics (CLK) assay, which uses time-dependent formaldehyde-cross-linking data to extract kinetic parameters of chromatin binding. Many aspects of formaldehyde behavior in cells are unknown or undocumented, however, and could potentially affect CLK data analyses. Here, we report biochemical results that better define the properties of formaldehyde-cross-linking in budding yeast cells. These results have the potential to inform interpretations of "standard" chromatin assays, including chromatin immunoprecipitation. Moreover, the chemical complexity we uncovered resulted in the development of an improved method for measuring binding kinetics with the CLK approach. Optimum conditions included an increased formaldehyde concentration and more robust glycine-quench conditions. Notably, we observed that formaldehyde-cross-linking rates can vary dramatically for different protein-DNA interactions Some interactions were cross-linked much faster than the macromolecular interactions, making them suitable for kinetic analysis. For other interactions, we found the cross-linking reaction occurred on the same time scale or slower than binding dynamics; for these interactions, it was sometimes possible to compute the equilibrium-binding constant but not binding on- and off-rates. This improved method yields more accurate binding kinetics estimates on the minute time scale.
Incidence of sex chromosome aneuploidy in men is as high as 1:500. The predominant conditions are an additional Y chromosome (47,XYY) or an additional X chromosome (47,XXY). Behavioral studies using animal models of these conditions are rare. To assess the role of sex chromosome aneuploidy on sexual behavior, we used mice with a spontaneous mutation on the Y chromosome in which the testis‐determining gene Sry is deleted (referred to as Y−) and insertion of a Sry transgene on an autosome. Dams were aneuploid (XXY−) and the sires had an inserted Sry transgene (XYSry). Litters contained six male genotypes, XY, XYY−, XXSry, XXY−Sry, XYSry and XYY−Sry. In order to eliminate possible differences in levels of testosterone, all of the subjects were castrated and received testosterone implants prior to tests for male sex behavior. Mice with an additional copy of the Y− chromosome (XYY−) had shorter latencies to intromit and achieve ejaculations than XY males. In a comparison of the four genotypes bearing the Sry transgene, males with two copies of the X chromosome (XXSry and XXY−Sry) had longer latencies to mount and thrust than males with only one copy of the X chromosome (XYSry and XYY−Sry) and decreased frequencies of mounts and intromissions as compared with XYSry males. The results implicate novel roles for sex chromosome genes in sexual behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.