Lancehead pit-vipers (Bothrops genus) are an extremely diverse and medically important group responsible for the greatest number of snakebite envenomations and deaths in South America. Bothrops atrox (common lancehead), responsible for majority of snakebites and related deaths within the Brazilian Amazon, is a highly adaptable and widely distributed species, whose venom variability has been related to several factors, including geographical distribution and habitat type. This study examined venoms from four B. atrox populations (Belterra and Santarém, PA; Pres. Figueiredo, AM and São Bento, MA), and two additional Bothrops species (B. jararaca and B. neuwiedi) from Southeastern region for their coagulotoxic effects upon different plasmas (human, amphibian, and avian). The results revealed inter– and intraspecific variations in coagulotoxicity, including distinct activities between the three plasmas, with variations in the latter two linked to ecological niche occupied by the snakes. Also examined were the correlated biochemical mechanisms of venom action. Significant variation in the relative reliance upon the cofactors calcium and phospholipid were revealed, and the relative dependency did not significantly correlate with potency. Relative levels of Factor X or prothrombin activating toxins correlated with prey type and prey escape potential. The antivenom was shown to perform better in neutralising prothrombin activation activity than neutralising Factor X activation activity. Thus, the data reveal new information regarding the evolutionary selection pressures shaping snake venom evolution, while also having significant implications for the treatment of the envenomed patient. These results are, therefore, an intersection between evolutionary biology and clinical medicine.
Snake venom proteomes/peptidomes are highly complex and maintenance of their integrity within the gland lumen is crucial for the expression of toxin activities. There has been considerable progress in the field of venom proteomics, however, peptidomics does not progress as fast, because of the lack of comprehensive venom sequence databases for analysis of MS data. Therefore, in many cases venom peptides have to be sequenced manually by MS/MS analysis or Edman degradation. This is critical for rare snake species, as is the case of Bothrops cotiara (BC) and B. fonsecai (BF), which are regarded as near threatened with extinction. In this study we conducted a comprehensive analysis of the venom peptidomes of BC, BF, and B. jararaca (BJ) using a combination of solid-phase extraction and reversed-phase HPLC to fractionate the peptides, followed by nano-liquid chromatography-tandem MS (LC-MS/MS) or direct infusion electrospray ionization-(ESI)-MS/MS or MALDI-MS/MS analyses. We detected marked differences in the venom peptidomes and identified peptides ranging from 7 to 39 residues in length by de novo sequencing. Forty-four unique sequences were manually identified, out of which 30 are new peptides, including 17 bradykinin-potentiating peptides, three poly-histidine-poly-glycine peptides and interestingly, 10 L-amino acid oxidase fragments. Some of the new bradykinin-potentiating peptides display significant bradykinin potentiating activity. Automated database search revealed fragments from several toxins in the peptidomes, mainly from L-amino acid oxidase, and allowed the determination of the peptide bond specificity of proteinases and amino acid occurrences for the P4-P4 sites. We also demonstrate that the venom lyophilization/resolubilization process greatly increases the complexity of the peptidome because of the imbalance caused to the venom proteome and the consequent activity of proteinases on venom components. The use of proteinase inhibitors clearly showed different outcomes in the peptidome characterization and suggested that degradomic-peptidomic analysis of snake venoms is highly sensitive to the conditions of sampling procedures. Molecular & Cellular Proteomics 11: 10.1074/mcp.M112.019331, 1245-1262, 2012.Snake venoms are the products of specialized secretory glands located above the upper jawbone in venomous snakes. Like most secretory proteins, venom toxins are synthesized in the cytoplasm of secretory cells in the gland and transferred to the rough endoplasmic reticulum, then to the Golgi apparatus, and finally transported via secretory granules to the lumen of the venom gland (1). The snake venomous secretion is an aqueous solution containing a high amount of proteins and peptides, however the mechanisms for controlling protein secretion into the gland lumen and for regulating its protein/peptide concentration, ionic strength, and pH are unknown. As in all eukaryotic cells the proteomes of the venom gland tissue are highly complex, comprising a much great number and diversity of multidomain proteins (2...
Comparisons between venoms from snakes kept under captivity or collected at the natural environment are of fundamental importance in order to obtain effective antivenoms to treat human victims of snakebites. In this study, we compared composition and biological activities of Bothrops atrox venom from snakes collected at Tapajós National Forest (Pará State, Brazil) or maintained for more than 10 years under captivity at Instituto Butantan herpetarium after have been collected mostly at Maranhão State, Brazil. Venoms from captive or wild snakes were similar except for small quantitative differences detected in peaks correspondent to phospholipases A2 (PLA2), snake venom metalloproteinases (SVMP) class PI and serine proteinases (SVSP), which did not correlate with fibrinolytic and coagulant activities (induced by PI-SVMPs and SVSPs). In both pools, the major toxic component corresponded to PIII-SVMPs, which were isolated and characterized. The characterization by mass spectrometry of both samples identified peptides that matched with a single PIII-SVMP cDNA characterized by transcriptomics, named Batroxrhagin. Sequence alignments show a strong similarity between Batroxrhagin and Jararhagin (96%). Batroxrhagin samples isolated from venoms of wild or captive snakes were not pro-coagulant, but inhibited collagen-induced platelet-aggregation, and induced hemorrhage and fibrin lysis with similar doses. Results suggest that in spite of environmental differences, venom variability was detected only among the less abundant components. In opposition, the most abundant toxin, which is a PIII-SVMP related to the key effects of the venom, is structurally conserved in the venoms. This observation is relevant for explaining the efficacy of antivenoms produced with venoms from captive snakes in human accidents inflicted at distinct natural environments.
Snake venom proteomes/peptidomes are highly complex and subject to ontogenetic changes. Individual variation in the venom proteome of juvenile snakes is poorly known. We report the proteomic analysis of venoms from 21 juvenile specimens of Bothrops jararaca of different geographical origins and correlate it with the evaluation of important venom features. Individual venoms showed similar caseinolytic activities; however, their amidolytic activities were significantly different. Rather intriguingly, plasma coagulant activity showed remarkable variability among the venoms but not the prothrombin-activating activity. LC-MS analysis showed significant differences between venoms; however, an interesting finding was the ubiquitous presence of the tripeptide ZKW, an endogenous inhibitor of metalloproteinases. Electrophoretic profiles of proteins submitted to reduction showed significant variability in total proteins, glycoproteins, and in the subproteomes of proteinases. Moreover, identification of differential bands revealed variation in most B. jararaca toxin classes. Profiles of venoms analyzed under nonreducing conditions showed less individual variability and identification of proteins in a conserved band revealed the presence of metalloproteinases and l-amino acid oxidase as common components of these venoms. Taken together, our findings suggest that individual venom proteome variability in B. jararaca exists from a very early animal age and is not a result of ontogenetic and diet changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.