This study reports the development of a novel multiplex PCR assay based on SCAR (Sequence-Characterised Amplified Region) markers for the simultaneous diagnosis of the 7 Eimeria species that infect domestic fowl. Primer pairs specific for each species were designed in order to generate a ladder of amplification products ranging from 200 to 811 bp. Sensitivity tests for each species were carried out, showing a detection threshold of 1-5 pg, which corresponds approximately to 2-8 sporulated oocysts. Distinct isolates of the 7 Eimeria species from different geographical sources were tested and successfully detected by the assay. All the species were amplified homogeneously, whether or not one of them was present in a high quantity, indicating that there was no cross-interference. The assay was also tested with different sources of Taq DNA polymerase and thermocycler models, confirming the high reproducibility of the reaction. The economy of consumables and labour represented by a single-tube reaction greatly facilitates the molecular diagnosis of a large number of samples, making it appropriate for field epizootiological surveys. We propose the use of this multiplex PCR assay as a rapid and cost-effective diagnostic method for the detection and discrimination of the 7 Eimeria species that infect domestic fowl.
Snake venom proteomes/peptidomes are highly complex and subject to ontogenetic changes. Individual variation in the venom proteome of juvenile snakes is poorly known. We report the proteomic analysis of venoms from 21 juvenile specimens of Bothrops jararaca of different geographical origins and correlate it with the evaluation of important venom features. Individual venoms showed similar caseinolytic activities; however, their amidolytic activities were significantly different. Rather intriguingly, plasma coagulant activity showed remarkable variability among the venoms but not the prothrombin-activating activity. LC-MS analysis showed significant differences between venoms; however, an interesting finding was the ubiquitous presence of the tripeptide ZKW, an endogenous inhibitor of metalloproteinases. Electrophoretic profiles of proteins submitted to reduction showed significant variability in total proteins, glycoproteins, and in the subproteomes of proteinases. Moreover, identification of differential bands revealed variation in most B. jararaca toxin classes. Profiles of venoms analyzed under nonreducing conditions showed less individual variability and identification of proteins in a conserved band revealed the presence of metalloproteinases and l-amino acid oxidase as common components of these venoms. Taken together, our findings suggest that individual venom proteome variability in B. jararaca exists from a very early animal age and is not a result of ontogenetic and diet changes.
Antivenoms manufactured by bioCSL Limited (Australia) and Instituto Clodomiro Picado (Costa Rica) against the venom of the taipan snakes (Oxyuranus scutellatus) from Australia and Papua New Guinea (PNG), respectively, were compared using antivenomics, an analytical approach that combines proteomics with immunoaffinity chromatography. Both antivenoms recognized all venom proteins present in venom from PNG O. scutellatus, although a pattern of partial recognition was observed for some components. In the case of the Australian O. scutellatus venom, both antivenoms immunorecognized the majority of the components, but the CSL antivenom showed a stronger pattern of immunoreactivity, which was revealed by the percentage of retained proteins in the immunoaffinity column. Antivenoms interacted with taipoxin in surface plasmon resonance. These observations on antivenomics agree with previous neutralization studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.