This work describes the synthesis of poly(lactic acid) by the ring-opening polymerization of L-lactide in the presence of oligo(butylene succinate) with two different molecular weights (Mn = 6100 and 16300 g/mol) as a macroinitiator during reactive processing. The macroinitiators were added in concentrations 1 wt%, 2.5 wt%, 5 wt%, 10 wt% and 15 wt% in respect to the L-lactide mass in the premix. The properties of the received copolymers were extensively studied with spectroscopic techniques, GPC, DSC, XRD, TGA as well as nanoindentation. Blocky copolymers were received with number average molecular weights ranging from 30 to 100 kg/mol, which decreased with increasing the PBSu content in the feed. The introduction of the flexible PBSu chains decreased the single glass transition detected, while DSC and XRD gave indications that both components crystallized in the copolymers with PBSu premix content > 5 wt%. Thermal stability was maintained and depended on the composition and molecular weight. Nanoindentation showed that despite the decreasing trend of hardness and elastic modulus with increasing PBSu content, the PLA-PBSu 2.5% copolymers had simultaneously higher elasticity modulus and strength compared to the other compositions, possibly because of a complementary effect of their high molecular weight and crystallinity. These copolymers were promising for production with continuous reactive extrusion, a novel, fast and economically viable method to commercially produce PLA-based polymers.
The negative environmental effects of conventional polymeric materials have intensified the research toward the production of biobased counterparts. Vanillic acid (VA), a vanillin oxidation product, is a relatively new and most promising aromatic monomer for the synthesis of biobased polyesters. In this work, the synthesis of a new, high molecular weight alipharomatic polyester, poly(hexylene vanillate) (PHV), using 4-(6-hydroxyethoxy)-3-methoxybenzoic acid via a two-stage melt polycondensation method is reported. The success of the polymerization was confirmed using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transformed infrared spectroscopy (FTIR), while the number-average molecular weight (Mn) was estimated by size-exclusion chromatography (SEC). Moreover, the thermal behavior of PHV was determined with differential scanning calorimetry (DSC), and insights on the thermal stability and degradation mechanism of PHV were given. The mechanical and thermomechanical properties of the synthesized material were investigated, revealing a thermoplastic elastomer behavior, with elastic recovery at room temperature, associated with the formation of a mesophase status. Finally, rheological tests were applied, indicating that PHV is easily processable and fully recoverable upon yielding and flow cessation.
In this work, a 3D printing method, robocasting was utilized to manufacture zeolite ZSM-5-based woodpile monolith catalysts of approximately 10-mm diameter, using bentonite clay as binding matrix. The effect of three different binder concentrations, in the 40–60 wt.% range, on the rheological, physicochemical, and mechanical properties was examined. The rheometer measurements showed that the printing pastes have identical shear thinning behavior and demonstrate sufficient storage modulus, irrespective of the binder concentration. The printed monoliths had high BET surface areas and porosity. The results showed that the ZSM-5 crystals retained their porous structure, textural characteristics, and crystalline structure during the additive manufacturing process. Pyridine FTIR measurements demonstrated reduced total acidity and number of Brønsted acid sites in the final specimens due to the dilution with the bentonite powder. However, the acidity reduction was roughly proportional to the binder concentration, signifying that the ZSM-5 crystallites also retain their acidity during the robocasting printing. Finally, the mechanical reliability of the thermally treated monoliths was determined by calculating the Weibull modulus values through linear regression of the Weibull equation. The increase in the binder concentration increased the compression strength by a factor of 4.5 and achieved superior mechanical reliability. Graphical abstract
This work aimed to produce bio-based poly(ethylene furanoate) (PEF) with a high molecular weight using 2,5-furan dicarboxylic acid (FDCA) or its derivative dimethyl 2,5-furan dicarboxylate (DMFD), targeting food packaging applications. The effect of monomer type, molar ratios, catalyst, polycondensation time, and temperature on synthesized samples’ intrinsic viscosities and color intensity was evaluated. It was found that FDCA is more effective than DMFD in producing PEF with higher molecular weight. A sum of complementary techniques was employed to study the structure–properties relationships of the prepared PEF samples, both in amorphous and semicrystalline states. The amorphous samples exhibited an increase in glass transition temperature of 82–87 °C, and annealed samples displayed a decrease in crystallinity with increasing intrinsic viscosity, as analyzed by differential scanning calorimetry and X-ray diffraction. Dielectric spectroscopy showed moderate local and segmental dynamics and high ionic conductivity for the 2,5-FDCA-based samples. The spherulite size and nuclei density of samples improved with increased melt crystallization and viscosity, respectively. The hydrophilicity and oxygen permeability of the samples were reduced with increased rigidity and molecular weight. The nanoindentation test showed that the hardness and elastic modulus of amorphous and annealed samples is higher at low viscosities due to high intermolecular interactions and degree of crystallinity.
Poly(lactic acid) (PLA) composites with 0.5 wt% lignin or nanolignin were prepared with two different techniques: a) conventional melt-mixing and b) in situ Ring Opening Polymerization (ROP) by reactive processing. The ROP process was monitored by measuring the torque. The composites were synthesized rapidly using reactive processing that took under 20 min. When the catalyst amount was doubled, the reaction time was reduced to under 15 min. The dispersion, thermal transitions, mechanical properties, antioxidant activity, and optical properties of the resulting PLA-based composites were evaluated with SEM, DSC, nanoindentation, DPPH assay, and DRS spectroscopy. All reactive processing-prepared composites were characterized by means of SEM, GPC, and NMR to assess their morphology, molecular weight, and free lactide content. The benefits of the size reduction of lignin and the use of in situ ROP by reactive processing were demonstrated, as the reactive processing-produced nanolignin-containing composites had superior crystallization, mechanical, and antioxidant properties. These improvements were attributed to the participation of nanolignin in the ROP of lactide as a macroinitiator, resulting in PLA-grafted nanolignin particles that improved its dispersion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.