A new experimental and theoretical approach is presented to examine the dynamic lift forces that are generated in the compression of both fresh powder snow and wind-packed snow. At typical skiing velocities of 10 to 30ms$^{-1}$ the duration of contact of a ski or snowboard with the snow will vary from 0.05 to 0.2s depending on the length of the planing surface and its speed. No one, to our knowledge, has previously measured the dynamic behaviour of snow on such a short time scale and, thus, there are no existing measurements of the excess pore pressure that can build-up in snow on this time scale. Using a novel porous cylinder–piston apparatus, we have measured the excess pore pressure that would build-up beneath the piston surface and have also measured its subsequent decay due to the venting of the air from the snow at the porous wall of the cylinder. In further experiments, in which the air is slowly and deliberately drained to avoid a build-up in pore pressure, we have been able to separate out the force exerted by the ice crystal phase as a function of its instantaneous deformation. A theoretical model for the pore pressure relaxation in the porous cylinder is then developed using consolidation theory. Dramatically different dynamic behaviour is observed for two different snow types, one (wind-packed) giving a steady continuous relaxation of the excess pore pressure and the other (fresh powder) leading to a piston rebound with negative pore pressure. A feature of the rebound is the apparent debonding of sintered ice crystals after maximum compression. This behaviour is described well by introducing a debonding coefficient where the debonding force is proportional to the expansion velocity of the medium. The experimental and theoretical approach presented herein and the previous generalized lubrication theory for compressible porous media, have laid the foundation for understanding the detailed dynamic response of soft porous layers to rapid deformation.
Amongst the principal separation processes used to treat effluents in the water industry is the sedimentation of solid particulates from the carrier fluid known as mixed liquor by the force of gravity. New York City DEP is in the process of upgrading its Upper East River water pollution control plants (WPCP's) to incorporate biological nitrogen removal (BNR). The rectangular final settling tanks (FSTs) are a central link in the treatment process and often times a limiting factor in terms of the solids handling capacity especially when high throughput requirements need to be met. The objective of this study was to develop a 3D Computational Fluid Dynamics (CFD) model based on the exact geometry of the existing Gould II type 1170 S. Xanthos et al.FSTs in Battery "E" at the Wards Island WPCP and calibrate and validate it with insitu data collected at the site. The goal of this study is to illustrate how the different modeling approaches applied on the physical phenomena that take place in the tank affect the outcome of a CFD model and its predictions. It is common for internal baffles to be added at the inlet and within the tank to handle high flow requirements such as wet weather storms. This model has been used as a tool to assess the internal behavior of such baffles and assess the clarifier's performance based on different inlet baffle configurations.
The water industry and especially the wastewater treatment sector has come under steadily increasing pressure to optimize their existing and new facilities to meet their discharge limits and reduce overall cost. Gravity separation of solids, producing clarified overflow and thickened solids underflow has long been one of the principal separation processes used in treating secondary effluent. Final settling tanks (FSTs) are a central link in the treatment process and often times act as the limiting step to the maximum solids handling capacity when high throughput requirements need to be met. The Passaic Valley Sewerage Commission (PVSC) is interested in using a computational fluid dynamics (CFD) modeling approach to explore any further FST retrofit alternatives to sustain significantly higher plant influent flows, especially under wet weather conditions. In detail there is an interest in modifying and/or upgrading/optimizing the existing FSTs to handle flows in the range of 280-720 million gallons per day (MGD) (12.25-31.55 m(3)/s) in compliance with the plant's effluent discharge limits for total suspended solids (TSS). The CFD model development for this specific plant will be discussed, 2D and 3D simulation results will be presented and initial results of a sensitivity study between two FST effluent weir structure designs will be reviewed at a flow of 550 MGD (∼24 m(3)/s) and 1,800 mg/L MLSS (mixed liquor suspended solids). The latter will provide useful information in determining whether the existing retrofit of one of the FSTs would enable compliance under wet weather conditions and warrants further consideration for implementing it in the remaining FSTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.