Middle to late Miocene carbonates from Central Luconia, offshore Sarawak, Malaysia, contain significant hydrocarbon reserves. However, the complex pore system of the carbonate reservoir poses drilling and production challenges, such as water coning. Moreover, capturing and storing CO2 in depleted carbonate buildups requires the pore type architecture to be well understood. The aim of this study was to investigate pore types in a stratigraphic context and to propose a 3D conceptual model of the pore type distribution. The case study discussed here is the E11 Field. E11 is considered the type location for Central Luconia carbonates because of its unique, almost complete core coverage. The data used for this study included a 3D seismic volume, core descriptions, together with petrographic and petrophysical data. The workflow used involved partitioning the buildup into specific lithofacies, pore, and cement types within stratigraphic sequences and depositional environments. Results show that the E11 Field represents a coral and foraminifera-dominated isolated carbonate platform. Fifteen lithofacies and ten microfacies were identified. Paragenetic alterations include five stages of calcite cement, three stages of dolomite cement, one stage of dedolomite, and a minor stage of pyrite mineralization. Diagenetic changes took place in various environments ranging from early marine phreatic, to mixed meteoric-marine, to meteoric realms. Minor burial diagenesis led to the formation of late-stage cements. Early diagenetic alterations closely resemble the primary facies arrangement in distinct environments of deposition and stratigraphic sequences. Interestingly, these sequences mimic in places distinct changes of the seismic geomorphology of buildups. In particular, the middle to upper Miocene boundary (TF2/TF3) coincides approximately with a major reduction in buildup diameter. This backstep corresponds to a meter-thick, low-porosity flooding interval observed in the core of the E11 buildup. Tight (low-porous) layers in the E11 buildup mark the upper and lower boundaries of stratigraphic sequences and are partially traceable on seismic reflection data across the buildup. A lithological correlation across the E11 field showed that wells located near the inner, lagoonal part of the buildup are more prone to dolomitization and attract higher thicknesses of low-porosity flooding interval. The combination of depositional sequences, diagenetic phases, and seismic geomorphology allowed the buildup to be divided into six stratigraphic sequences, each approximately 50–70 m thick. These sequences can be compared to neighboring buildups and to regional stratigraphic sections using biostratigraphic and chemo-stratigraphic data. Larger benthic foraminifera; i.e., Miogypsina and Austrotrillina, are restricted to the middle Miocene stage “TF1” and “TF2” (where TF is a stage of the Tertiary Period), (19–11.1 Ma), whereas Amphistegina and Cycloclypeus are more indicative of the late Miocene stage TF3 (11.1–7.1 Ma). The biostratigraphic boundary TF2/TF3 was correlated with its strontium isotope signature. This allowed the age of the middle to late Miocene boundary to be estimated. These observations from the E11 buildup were synthesized in a conceptual depositional and diagenetic model. The description of E11 may serve as an analog for carbonate buildups elsewhere in Southeast Asia (Vietnam, Indonesia, and Philippines) and aid in the proposed CO2 storage project.
Karstification in carbonate platforms of the Miocene age in Central Luconia province, offshore Sarawak, Malaysia, has been discussed since the onset of exploration and initial discoveries in the region, with over 200 mapped platforms to date. An extensive drilling program over the last decade confirmed the existence of karst during the drilling process where issues such as total loss circulation and bit drops were common. Karst in Central Luconia has been proposed by several authors; however, detailed quantitative description of the observed features have not yet been conducted. This study involves systematic mapping of loss circulation depths, chalkified/rubble/vuggy zones described from cores, and vugs of >2 mm in size and moldic porosity observed on thin sections of the Jintan platform. These data supplement the interpretation of karst from multiple 3D seismic attributes. Seismic interpretation of the Jintan and M1 platforms revealed an extensive dendritic pattern which is on average 70–100 m deep and 3–5 km long, and circular geobodies of 1 km in width that exist on the upper part of the platform. Spectral decomposition, also known as time-frequency analysis, was used to enhance the interpretation of karst features on seismics within a specific wavelength. In this study, a comparison of three spectral decomposition methods applied on the 3D seismic cube of the Jintan and M1 platforms was undertaken to determine the method which allowed for better delineation of the karst features. The results show that the short-time Fourier transform (STFT) method using frequencies of 46, 54, and 60 Hz delineated most of the karst features compared to the continuous wavelet transform (CWT) Morlet and CWT Ricker wavelet methods. This paper aims to discuss the dimensions, evolution and geometry of the karst features quantitatively on three selected karst horizons named “K1”, “K2”, “K3”. Interpretation revealed that the dendritic karst features were found to be most prominent on the K2 horizon which lies below a conspicuous change of the external geomorphology of the platform. Backstepping of the platform margin by 12 km is observed in both platforms. Quantitative seismic interpretation shows that the karst observed in M1 platform is approximately 70–100 m deep, and the dendritic features are around 1–2 km in length and approximately 500 m wide; whereas, in the Jintan platform the dendritic features observed are up to 5 km in length with several 1 km wide circular/sinkhole features. More than 20 dendritic features orientated SE and NS were mapped mainly in the transitional area as well as the center of both platforms. The nature of the karst morphology in Central Luconia remains controversial; however, it is proposed to be of mixing zone karst origin.
Reducing uncertainty in 3D carbonate rock type distribution is a critical factor that profoundly impacts field development for hydrocarbon or carbon capture and storage (CCS) projects. Miocene carbonate reservoirs in the Central Luconia offshore region are economically important global gas reservoirs. The nature of these carbonate rocks can be visually distinct in the core and the multiscale reservoir heterogeneity might vary in scale from the 100-m scale to the sub-millimeter scale. This work presents a series of steps workflow to obtain spatial information about the organization scheme of carbonate rock types, and capture the most important petrophysical and sedimentary controls on rock property distribution in the E11 field, a carbonate buildup, located in Central Luconia Province, offshore Malaysia. The spatial data were generated from a supervised neural Kohonen algorithm. The rock types predicted with this workflow were propagated using IPSOM probabilized self-organizing maps SOM. This tool is used for classifying multivariate data samples according to “patterns” or multivariate responses. The workflow includes several steps: A Step 1—Core data description, B Step 2—Thin section description, C Step 3—Well log interpretation, and D Step 4—IPSOM probabilized self-organizing maps for facies prediction SOM. The depth plots of the predicted rock type showed close correspondence to the core-based rock types in terms of the stratigraphic organization of tight and reservoir layers, proportions, and juxtaposition. This result is sufficient to merit the application of the rock type logs into a future porosity model of the E11 field, and to understand the lateral and vertical distribution of tight and reservoir rock types of distribution. The results can be used to build a future realistic digital twin of the subsurface, and in digital geological modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.