Magnetophoresis, the manipulation of trajectory of micro-scale entities using magnetic forces, as employed in microfluidic devices is reviewed at length in this article. Magnetophoresis has recently garnered significant interest due to its simplicity, in terms of implementation, as well as cost-effectiveness while being efficient and biocompatible. Theory associated with magnetophoresis is illustrated in this review along with different sources for creating magnetic field gradient commonly employed in microfluidic devices. Additionally, this article reviews the state-of-the-art of magnetophoresis based microfluidic devices, where positive- and negative-magnetophoresis are utilized for manipulation of micro-scale entities (cells and microparticles), employed for operations such as trapping, focusing, separation, and switching of microparticles and cells. The article concludes with a brief outlook of the field of magnetophoresis.
A novel continuous flow microfluidic device, integrated with soft-magnetic wire (permalloy), is fabricated and tested for magnetophoresis based separation. The flow-invasive permalloy wire, magnetized using an external bias field, is positioned perpendicular to the external magnetic field and with its length traversing the introduced sample flow. The microfluidic device is realized in PDMS; the mold for PDMS microstructures is cut out of Plexiglas® sheets with controllable dimensions. Microfluidic devices with microchannel height ranging between 0.5 mm and 2 mm are fabricated. Experiments are carried out with and without sheath flow; with sheath flow the microparticles are focused at the center of the microchannel.
When focusing is not employed, the microdevice can exhibit a complete separation (or filtration) with the introduction of the sample at rates lower than a maximum threshold. However, this complete separation is attributed to the fact that part of the particles, once they approach the repulsive field of the wire, will find their way into the attractive region of the wire while the remaining will be indefinitely trapped at the channel walls. On the other hand, when the focused sample is flowing at the same rate but alongside an appropriate sheath flow, the complete separation can be achieved with all (initially repelled) particles being captured on the attractive region of the wire itself.
This microdevice design is well suited for purification, enrichment, and detection of microparticles in lab-on-a-chip devices due to its ability to handle high throughput without compromising capture efficiency while exhibiting excellent reliability and flexibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.