In this paper, the application of soft computing techniques in prediction of an occupant's behaviour in an inhabited intelligent environment is addressed. In this research, daily activities of elderly people who live in their own homes suffering from dementia are studied. Occupancy sensors are used to extract the movement patterns of the occupant. The occupancy data is then converted into temporal sequences of activities which are eventually used to predict the occupant behaviour. To build the prediction model, different dynamic recurrent neural networks are investigated. Recurrent neural networks have shown a great ability in finding the temporal relationships of input patterns. The experimental results show that non-linear autoregressive network with exogenous inputs model correctly extracts the long term prediction patterns of the occupant and outperformed the Elman network. The results presented here are validated using data generated from a simulator and real environments.
In this paper, a hybrid technique for user activities outliers detection is introduced. The hybrid technique consists of a two-stage integration of Principal Component Analysis (PCA) and Fuzzy Rule-Based Systems (FRBS). In the first stage, the Hamming distance is used to measure the differences between different activities. PCA is then applied to the distance measures to find two indices of Hotelling's T 2 and Squared Prediction Error. In the second stage of the process, the calculated indices are provided as inputs to the FRBSs to model them heuristically. The model is used to identify the outliers and classify them. The proposed system is tested in real home environments, equipped with appropriate sensory devices, to identify outliers in the activities of daily living of the user. Three case studies are reported to demonstrate the effectiveness of the proposed system. The proposed system successfully identifies the outliers in activities distinguishing between the normal and abnormal behavioural patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.