SignificanceDrug-resistant subpopulations of microbes or tumor cells are difficult to detect but can confound disease treatment. In this deep characterization of a chronic fungal infection, we report unprecedented heterogeneity in the drug resistance-related gene MRR1 among Clavispora (Candida) lusitaniae isolates from a single individual. Cells expressing Mrr1 variants that led to drug resistance, by elevated expression of the MDR1-encoded efflux protein, were present at low levels in each sample and thus were undetected in standard assays. We provide evidence that these drug-resistant fungi may arise indirectly in response to other factors present in the infection. Our work suggests that alternative methods may be able to identify drug-resistant subpopulations and thus positively impact patient care.
Phylogenomic approaches have the potential to improve confidence about the inter-relationships of species in the order Mucorales within the fungal tree of life. Rhizopus species are especially important as plant and animal pathogens and bioindustrial fermenters for food and metabolite production. A dataset of 192 orthologous genes was used to construct a phylogenetic tree of 21 Rhizopus strains, classified into four species isolated from habitats of industrial, medical and environmental importance. The phylogeny indicates that the genus Rhizopus consists of three major clades, with R. microsporus as the basal species and the sister lineage to R. stolonifer and two closely related species R. arrhizus and R. delemar. A comparative analysis of the mating type locus across Rhizopus reveals that its structure is flexible even between different species in the same genus, but shows similarities between Rhizopus and other mucoralean fungi. The topology of single-gene phylogenies built for two genes involved in mating is similar to the phylogenomic tree. Comparison of the total length of the genome assemblies showed that genome size varies by as much as threefold within a species and is driven by changes in transposable element copy numbers and genome duplications.
The first global genomic, proteomic, and secondary metabolomic characterization of the filamentous fungus Aspergillus nidulans following growth onboard the International Space Station (ISS) is reported. The investigation included the A. nidulans wild-type and three mutant strains, two of which were genetically engineered to enhance secondary metabolite production. Whole genome sequencing revealed that ISS conditions altered the A. nidulans genome in specific regions. In strain CW12001, which features overexpression of the secondary metabolite global regulator laeA, ISS conditions induced the loss of the laeA stop codon. Differential expression of proteins involved in stress response, carbohydrate metabolic processes, and secondary metabolite biosynthesis was also observed. ISS conditions significantly decreased prenyl xanthone production in the wild-type strain and increased asperthecin production in LO1362 and CW12001, which are deficient in a major DNA repair mechanism. These data provide valuable insights into the adaptation mechanism of A. nidulans to spacecraft environments.
Friedmanniomyces endolithicus is a highly melanized fungus endemic to the Antarctic, occurring exclusively associated with endolithic communities in the ice-free areas of the Victoria Land, including the McMurdo Dry Valleys, the coldest and most hyper-arid desert on Earth and accounted as the Martian analogue on our planet. F. endolithicus is highly successful in these inhospitable environments, and is the most widespread and commonly isolated species from these peculiar niches, indicating a high degree of adaptation. The nature of its extremo-tolerance has not been previously investigated. To support this, we sequenced the genome of F. endolithicus CCFEE 5311 to explore gene content and genomic patterns that could be attributed to its specialization. The predicted functional potential of the genes was assigned by similarity to InterPro and CAZy domains. The was compared to phylogenetically close relatives which are also melanized fungi occurring in extreme environments including F. simplex, Acidomyces acidophilus, Hortaea thailandica and H. werneckii. We tested if shared genomic traits existed among these species and the hyperextremotolerant fungus F. endolithicus. We found that some characters for stress tolerance such as meristematic growth and cold tolerance are enriched in F. endolithicus that may be triggered by the exposure to Antarctic prohibitive conditions.
The draft genome sequences of Rachicladosporium antarcticum CCFEE 5527 and Rachicladosporium sp. CCFEE 5018 are the first sequenced genomes from this genus, which comprises rock-inhabiting fungi. These endolithic strains were isolated from inside rocks collected from the Antarctic Peninsula and Battleship Promontory (McMurdo Dry Valleys), Antarctica, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.