This review presents our researches on the preparation and material application of inclusion complexes that comprises an amylose host and polymeric guests through phosphorylase-catalyzed enzymatic polymerization. Amylose is a well-known polysaccharide and forms inclusion complexes with various hydrophobic small molecules. Pure amylose is produced by enzymatic polymerization by using α-D-glucose 1-phosphate as a monomer and maltooligosaccharide as a primer catalyzed by phosphorylase. We determined that a propagating chain of amylose during enzymatic polymerization wraps around hydrophobic polymers present in the reaction system to form inclusion complexes. We termed this polymerization "vine-twining polymerization" because it is similar to the way vines of a plant grow around a rod. Hierarchical structured amylosic materials, such as hydrogels and films, were fabricated by inclusion complexation through vine-twining polymerization by using copolymers covalently grafted with hydrophobic guest polymers. The enzymatically produced amyloses induced complexation with the guest polymers in the intermolecular graft copolymers, which acted as cross-linking points to form supramolecular hydrogels. By including a film-formable main-chain in the graft copolymer, a supramolecular film was obtained through hydrogelation. Supramolecular polymeric materials were successfully fabricated through vine-twining polymerization by using primer-guest conjugates. The products of vine-twining polymerization form polymeric continuums of inclusion complexes, where the enzymatically produced amylose chains elongate from the conjugates included in the guest segments of the other conjugates.
Thermostable phosphorylase-catalyzed enzymatic polymerization at 80 °C using a primer-grafted poly(γ-glutamic acid), followed by cooling at room temperature, induced the formation of microparticles.
Amylose, a natural polysaccharide, acts as a host molecule to form supramolecular inclusion complexes in its enzymatically formation process, that is, phosphorylase-catalyzed enzymatic polymerization using the α-d-glucose 1-phosphate monomer and the maltooligosaccharide primer, in the presence of appropriate guest polymers (vine-twining polymerization). Furthermore, in the vine-twining polymerization using maltooligosaccharide primer-grafted polymers, such as maltoheptaose (G7)-grafted poly(γ-glutamic acid) (PGA), in the presence of poly(ε-caprolactone) (PCL), the enzymatically elongated amylose graft chains have formed inclusion complexes with PCL among the PGA main-chains to construct supramolecular networks. Either hydrogelation or aggregation as a macroscopic morphology from the products was observed in accordance with PCL/primer feed ratios. In this study, we evaluated macroscopic morphologies from such amylosic supramolecular networks with different guest polymers in the vine-twining polymerization using G7-grafted PGA in the presence of polytetrahydrofuran (PTHF), PCL, and poly(l-lactide) (PLLA). Consequently, we found that the reaction mixture using PTHF totally turned into a hydrogel form, whereas the products using PCL and PLLA were aggregated in the reaction mixtures. The produced networks were characterized by powder X-ray diffraction and scanning electron microscopic measurements. The difference in the macroscopic morphologies was reasonably explained by stabilities of the complexes depending on the guest polymers.
Amylose forms supramolecular inclusion complexes with polymeric guests in the phosphorylase-catalyzed enzymatic polymerization field, so-called “vine-twining polymerization”. However, such inclusion complexes have not exhibited specific properties and processability as functional supramolecular materials. In this study, we found that amylosic inclusion complexes, which were obtained by vine-twining polymerization using a designed guest polymer, that is, an amphiphilic triblock copolymer poly(2-methyl-2-oxazoline- block -tetrahydrofuran- block -2-methyl-2-oxazoline), exhibited gel and film formation properties. The characterization results of the products suggested that enzymatically elongated amylose chains complexed with the polytetrahydrofuran block in the triblock copolymer. Accordingly, the outer poly(2-methyl-2-oxazoline) blocks constructed hydrophilic spaces among the inclusion complex segments. Furthermore, the presence of such outer blocks affected the lower regularity of crystalline alignment among the inclusion complex segments in the products. Such higher-order structures probably induced the formation of supramolecular soft materials, such as gels and films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.