Background: Drug candidates often cause an unwanted blockage of the potassium ion channel of the human ether-ago go related gene (hERG). The blockage leads to long QT syndrome (LQTS), which is a severe life-threatening cardiac side effect. Therefore, a virtual screening method to predict drug-induced hERG-related cardiotoxicity could facilitate drug discovery by filtering out toxic drug candidates. Result: In this study, we generated a reliable hERG-related cardiotoxicity dataset composed of 2130 compounds, which were carried out under constant conditions. Based on our dataset, we developed a computational hERG-related cardiotoxicity prediction model. The neural network model achieved an area under the receiver operating characteristic curve (AUC) of 0.764, with an accuracy of 90.1%, a Matthews correlation coefficient (MCC) of 0.368, a sensitivity of 0.321, and a specificity of 0.967, when tenfold cross-validation was performed. The model was further evaluated using ten drug compounds tested on guinea pigs and showed an accuracy of 80.0%, an MCC of 0.655, a sensitivity of 0.600, and a specificity of 1.000, which were better than the performances of existing hERG-toxicity prediction models. Conclusion: The neural network model can predict hERG-related cardiotoxicity of chemical compounds with a high accuracy. Therefore, the model can be applied to virtual high-throughput screening for drug candidates that do not cause cardiotoxicity. The prediction tool is available as a web-tool at http://ssbio.cau.ac.kr/CardPred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.