With recent development of spectral-domain optical coherence tomography (SD-OCT), the pathological changes of retina can be observed in much greater detail. SD-OCT clearly delineates three highly reflective lines in the outer retina, which are external limiting membrane (ELM), photoreceptor inner and outer segment (IS/OS) junction, and cone outer segment tips (COST) in order from inside. These lines can serve as hallmarks for the evaluation of photoreceptor condition. In retinitis pigmentosa (RP) leading to photoreceptor degeneration, the ELM, IS/OS, and COST lines are shortened with the progression of the disease. In addition, shortening of the ELM, IS/OS and COST lines is significantly associated with each other. The line length is longest in the ELM, followed by the IS/OS, and COST, suggesting that retinal layer becomes disorganized first at the COST, followed by the IS/OS and finally the ELM. This finding is consistent with the previous report that the earliest histopathological change in RP is a shortening of the photoreceptor outer segments. On the other hand, retinal layer becomes restored first at the ELM, followed by the IS/OS and finally the COST after macular hole surgery. There may be a directionality of photoreceptor impairment or restoration on optical coherence tomographic image.
Retinitis pigmentosa (RP) is a progressive inherited retinal disease, and patients with RP have reduced visual function caused by a degeneration of the photoreceptors and retinal pigment epithelium (RPE). At the end stage of RP, the degeneration of the photoreceptors in the fovea reduces central vision, and RP is one of the main causes of acquired blindness in developed countries. Therefore, morphological and functional assessments of the photoreceptors in the macula area can be useful in estimating the residual retinal function in RP patients. Optical coherence tomography (OCT) is a well-established method of examining the retinal architecture in situ. The photoreceptor inner/outer segment (IS/OS) junction is observed as a distinct, highly reflective line by OCT. The presence of the IS/OS junction in the OCT images is essential for normal visual function. Fundus autofluorescence (FAF) results from the accumulation of lipofuscin in the RPE cells and has been used to investigate RPE and retinal function. More than one-half of RP patients have an abnormally high density parafoveal FAF ring (AF ring). The AF ring represents the border between functional and dysfunctional retina. In this review, we shall summarize recent progress on diagnostic imaging in eyes with RP.
BackgroundTopical therapy is effective for dry eye, and its prolonged effects should help in maintaining the quality of life of patients with dry eye. We previously reported that the oral administration of rebamipide (Reb), a mucosal protective agent, had a potent therapeutic effect on autoimmune lesions in a murine model of Sjögren's syndrome (SS). However, the effects of topical treatment with Reb eyedrops on the ocular lesions in the murine model of SS are unknown.Methods and FindingReb eyedrops were administered to the murine model of SS aged 4–8 weeks four times daily. Inflammatory lesions of the extraorbital and intraorbital lacrimal glands and Harderian gland tissues were histologically evaluated. The direct effects of Reb on the lacrimal glands were analyzed using cultured lacrimal gland cells. Tear secretions of Reb-treated mice were significantly increased compared with those of untreated mice. In addition to the therapeutic effect of Reb treatment on keratoconjunctivitis, severe inflammatory lesions of intraorbital lacrimal gland tissues in this model of SS were resolved. The mRNA expression levels of IL-10 and mucin 5Ac in conjunctival tissues from Reb-treated mice was significantly increased compared with those of control mice. Moreover, lactoferrin production from lacrimal gland cells was restored by Reb treatment.ConclusionTopical Reb administration had an anti-inflammatory effect on the ocular autoimmune lesions in the murine model of SS and a protective effect on the ocular surfaces.
Objective:To investigate the surfaces and principal elements of the colorants of cosmetically tinted contact lenses (Cos-CLs).Methods:We analyzed the surfaces and principal elements of the colorants of five commercially available Cos-CLs using scanning electron microscopy with energy-dispersive x-ray analysis.Results:In two Cos-CLs, the anterior and posterior surfaces were smooth, and colorants were found inside the lens. One lens showed colorants located to a depth of 8 to 14 μm from the anterior side of the lens. In the other lens, colorants were found in the most superficial layer on the posterior surface, although a coated layer was observed. The colorants in the other three lenses were deposited on either lens surface. Although a print pattern was uniform in embedded type lenses, uneven patterns were apparent in dot-matrix design lenses. Colorants used in all lenses contained chlorine, iron, and titanium. In the magnified scanning electron microscopy images of a certain lens, chlorine is exuded and spread.Conclusions:Cosmetically tinted contact lenses have a wide variety of lens surfaces and colorants. Colorants may be deposited on the lens surface and consist of an element that has tissue toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.