The X-ray absorption fine structure method was applied for the quantitative analysis of hexavalent Cr in electronic products. The pre-edge peak intensity of the Cr K-edge increased according to the hexavalent Cr amount, and the hexavalent Cr ratio was calculated quantitatively by using the intensity. By combining with inductively coupled plasma atomic emission spectroscopy measurement results that gave the total Cr amount, the absolute amount of hexavalent Cr in chromate conversion coating and plastic samples could be evaluated. The results obtained by this method were in good agreement with those obtained by the chemical analysis method. This method can be successfully applied for the determination of hexavalent Cr amount in electronic products such as chromate conversion coating and plastic.
Introduction Lithium-ion batteries using Li4Ti5O12 anode realize excellent performance of power, fast-charge, life, and safety [1]. However, the theoretical capacity of LTO is low (175 mAh/g) compared to that of graphite anode. We have been developing TiNb2O7 (TNO) as high-capacity anode material in order to replace the LTO anode [2]. The theoretical capacity of TNO is 387.6 mAh/g according to 5 Li insertion per formula unit, regarding electron transfer about Nb5+/Nb3+, Ti4+/Ti3+redox couples. Only a few researchers have reported on a large storage of more than 4 Li insertion (310 mAh/g). Hence, we report the lithium storage mechanism and electrode performance of hydrothermally synthesized TNO particles with the large storage of more than 4 Li insertion. Experimental TNO particle samples were synthesized by hydrothermal method. Niobium (V) chloride was dissolved in ethanol, and become mixed with Titanium (IV) oxysulfate dissolved in dilute sulfuric acid. Ammonia solution was slowly dropped to mixed solution with stirring until pH values were changed to 8. The mixture was transferred to autoclave, and gave a thermal treatment for 5 hours at 160℃. After that, the mixture was washed with deionized water and was frozen and dried in vacuum. The precursor samples were heated from 700℃ to 1000℃ for 30min, and furnace cooled. To compare with electrode performance of TNO, we also prepared TNO particle sample by solid state reaction using conventional method. Electrochemical properties were carried out using a three-electrode cell with synthesized TNO anodes as working electrodes, and Li foils as reference and counter electrodes. The structural changes of TNO particles as lithium insertion proceeded were characterized using ex-situ XRD, and XAFS measurements at the BL16B2 beam line in the SPring-8 synchrotron radiation research facility. Results and discussion Fig.1 shows charge (Li insertion) - discharge (Li extraction) curves of TNO electrodes at the first cycle. The TNO particles prepared by solid state reaction had a reversible capacity of 306 mAh/g, which was correspond to 3.95 of Li insertion amount per formula unit. On the other hand, hydrothermally synthesized TNO particles heated at 1000℃ had a large reversible capacity of 341 mAh/g (4.40 of Li/ formula unit) by the increase in capacity below 1.0 V (vs.Li+/Li). The reversible capacity per volume calculated using the true density of TNO was 1481 mAh/cm3, which is twice higher than that of graphite anode. Fig.2 shows the dQ/dV-V plots at the first discharge curves. The hydrothermally synthesized TNO anode had an additional peak around 1.0 V (vs. Li+/Li), which was significantly different from solid state reaction particles. Primary particle size (ca.100 nm) of hydrothermally synthesized TNO was much smaller than that (ca. 1 μm) of TNO synthesized by solid state reaction as shown in Fig.3. We consider that a short diffusion length of lithium ions, a large surface area, and highly crystallization of thermally synthesized TNO particle would make it possible to insert into a storage site of lithium ions above 4.0 per formula unit. We will give a description about the Li insertion and extraction mechanism of TNO at below 1.0 V (vs. Li+/Li) by using electrochemical analysis, ex-situ XRD, and XAFS measurements. References [1] N. Takami, H. Inagaki, Y. Harada, Y. Fujita, K. Hoshina, J. Electrochem. Soc. 156, A128, 156 (2009). [2] Y. Harada, N. Takami, H. Inagaki, Y. Yoshida, JP Patent No 5230713 filed on Oct. 29, 2010. Figure 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.