Experiments on crater formation in the strength regime were conducted using projectiles of various shapes with an aspect ratio of ~ 1, including both solid and hollow interiors. The surface diameter, inner (pit) diameter, and depth of the craters on basalt and porous gypsum targets were measured. Using the bulk density of the projectile, the surface diameter and depth for basalt and the pit diameter and depth for porous gypsum were scaled using the pi-scaling law for crater formation in the strength regime. The numerical code iSALE was used to simulate the impact of projectiles of various shapes and interior structure with similar bulk densities. Results show that the distributions of the maximum (peak) pressure experienced and particle velocity in the targets were similar regardless of projectile shape and interior structure, implying that the dimensions of the final craters were almost identical. This is consistent with the experimental results. Thus, we conclude that the size of the craters formed by the impact of projectiles with different shape and interior structure can be scaled using a conventional scaling law in the strength regime, using bulk density as projectile density.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.