Background Surgical process modeling automatically identifies surgical phases, and further improvement in recognition accuracy is expected with deep learning. Surgical tool or time series information has been used to improve the recognition accuracy of a model. However, it is difficult to collect this information continuously intraoperatively. The present study aimed to develop a deep convolution neural network (CNN) model that correctly identifies the surgical phase during laparoscopic cholecystectomy (LC). Methods We divided LC into six surgical phases (P1–P6) and one redundant phase (P0). We prepared 115 LC videos and converted them to image frames at 3 fps. Three experienced doctors labeled the surgical phases in all image frames. Our deep CNN model was trained with 106 of the 115 annotation datasets and was evaluated with the remaining datasets. By depending on both the prediction probability and frequency for a certain period, we aimed for highly accurate surgical phase recognition in the operation room. Results Nine full LC videos were converted into image frames and were fed to our deep CNN model. The average accuracy, precision, and recall were 0.970, 0.855, and 0.863, respectively. Conclusion The deep learning CNN model in this study successfully identified both the six surgical phases and the redundant phase, P0, which may increase the versatility of the surgical process recognition model for clinical use. We believe that this model can be used in artificial intelligence for medical devices. The degree of recognition accuracy is expected to improve with developments in advanced deep learning algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.