J-aggregation of an achiral hydrophobic porphyrin, 5,10,15,20-tetraphenylporphyrin (H 2 TPP), at a toluene-4 M sulfuric acid interface was studied by a centrifugal liquid membrane-circular dichroism (CLM-CD) method. It was found for the first time that the exciton chirality sign of the interfacial Jaggregate of H 4 TPP 2+ was affected by the rotational direction of the cylindrical CLM cell: a negative sign for clockwise (CW) rotation and a positive sign for anticlockwise (ACW) rotation. The sign of the measured optical chirality also depended on the injection position of the H 2 TPP stock solution in the rotating cell. Furthermore, it was observed that the rotational linear velocity of the aqueous phase was faster than that of the toluene phase, when the CLM cell was rotated at 7000 rpm. The effects of rotational direction and sample injection position on the optical chirality were overcome by the effect of chiral counterions such as (+)or (−)-camphorsulfonic anions. From the observed results, a possible mechanism for the generation of the optical chirality of the interfacial J-aggregate was proposed taking into account an interfacial shear force and the spreading direction of H 2 TPP in the toluene phase.
Interfacial ion-association adsorption and aggregation of a water-soluble porphyrin, tetrakis(4-sulfonatephenyl)porphyrin (TPPS) diacid, which was promoted by a cationic cetyltrimethylammonium ion (CTA(+)), was studied by second harmonic generation (SHG) spectroscopy. Comparing the interfacial SH spectrum with the transmission absorption spectrum of TPPS in the aqueous solution elucidated the aggregation behavior of TPPS at the heptane/water interface. The time-dependent SHG spectra for TPPS aggregation and the interfacial tension lowering in the presence of CTA(+) were discussed on the basis of an electrostatic adsorption model. Then, it was suggested that TPPS diacid was highly concentrated by the ion-association with CTA(+) at the interface, which was the intermediate state before the final aggregated state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.