Tropical cyclones (TCs) are the most destructive weather systems that form over the tropical oceans, with 90 storms forming globally every year. The timely detection and tracking of TCs are important for advanced warning to the affected regions. As these storms form over the open oceans far from the continents, remote sensing plays a crucial role in detecting them. Here we present an automated TC detection from satellite images based on a novel deep learning technique. In this study, we propose a multi-staged deep learning framework for the detection of TCs, including, (i) a detector -Mask Region-Convolutional Neural Network (R-CNN), (ii) a wind speed filter, and (iii) a classifier -CNN. The hyperparameters of the entire pipeline is optimized to showcase the best performance using Bayesian optimization. Results indicate that the proposed approach yields high precision (97.10%), specificity (97.59%), and accuracy (86.55%) for test images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.