Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to broadly regulate the cellular stress response. In contrast, it is unclear if the PACAP/PAC1 receptor pathway has a role in human psychological stress responses, such as posttraumatic stress disorder (PTSD). In heavily traumatized subjects, we find a sex-specific association of PACAP blood levels with fear physiology, PTSD diagnosis and symptoms in females (N=64, replication N=74, p<0.005). Using a tag-SNP genetic approach (44 single nucleotide polymorphisms, SNPs) spanning the PACAP (ADCYAP1) and PAC1 (ADCYAP1R1) genes, we find a sex-specific association with PTSD. rs2267735, a SNP in a putative estrogen response element within ADCYAP1R1, predicts PTSD diagnosis and symptoms in females only (combined initial and replication samples: N=1237; p<2x10−5). This SNP also associates with fear discrimination and with ADCYAP1R1 mRNA expression. Methylation of ADCYAP1R1 is also associated with PTSD (p < 0.001). Complementing these human data, ADCYAP1R1 mRNA is induced with fear conditioning or estrogen replacement in rodent models. These data suggest that perturbations in the PACAP/PAC1 pathway are involved in abnormal stress responses underlying PTSD. These sex-specific effects may occur via estrogen regulation of ADCYAP1R1. PACAP levels and ADCYAP1R1 SNPs may serve as useful biomarkers to further our mechanistic understanding of PTSD.
Exposure to chronic stress has been argued to produce maladaptive anxiety-like behavioral states, and many of the brain regions associated with stressor responding also mediate anxiety-like behavior. Pituitary adenylate cyclase activating polypeptide (PACAP) and its specific G protein-coupled PAC 1 receptor have been associated with many of these stress-and anxiety-associated brain regions, and signaling via this peptidergic system may facilitate the neuroplasticity associated with pathological affective states. Here we investigated whether chronic stress increased transcript expression for PACAP, PAC 1 receptor, brain-derived neurotrophic factor (BDNF), and tyrosine receptor kinase B (TrkB) in several nuclei. In rats exposed to a 7 day chronic variate stress paradigm, chronic stress enhanced baseline startle responding induced by handling and exposure to bright lights. Following chronic stress, quantitative transcript assessments of brain regions demonstrated dramatic increases in PACAP and PAC 1 receptor, BDNF, and TrkB receptor mRNA expression selectively in the dorsal aspect of the anterolateral bed nucleus of the stria terminalis (dBNST). Related vasoactive intestinal peptide (VIP) and VPAC receptor, and other stress peptide transcript levels were not altered compared to controls. Moreover, acute PACAP38 infusion into the dBNST resulted in a robust dose-dependent anxiogenic response on baseline startle responding that persisted for 7 days. PACAP/PAC 1 receptor signaling has established trophic functions and its coordinate effects with chronic stress-induced dBNST BDNF and TrkB transcript expression may underlie the maladaptive BNST remodeling and plasticity associated with anxiety-like behavior.
Half of the data points were inadvertently omitted from the published version of Fig. 4a; the statistical analyses in the text and figure legend, however, do refer to the complete data set. The corrected figure is shown here and has been corrected in the online versions of the paper.In addition, we present additional information to clarify two results reported in the Article regarding plasma pituitary adenylate cyclaseactivating polypeptide (PACAP) levels and post-traumatic stress disorder (PTSD) symptom associations. In the Article, we reported replication of the association between PACAP levels and hyperarousal subscale, because this was the most robust association in the initial cohort. We now present the analyses separately for initial, replication and combined cohorts in Table 1. All associations but one are significant in the replication cohort. The second issue concerns potential medical confounds that could underlie the reported association. Although we do not have medical chart data on most patients, we do have responses from a health questionnaire administered during collection of trauma history and other data. We have now reanalysed the associations for the PTSD symptom scale (PSS) hyperarousal and total symptoms using subjective reports of health condition from the questionnaires as covariates. These data are presented in Table 2 and do not show any effect of health-and illness-related questions on the relationship between PACAP and PTSD symptoms. None of these additions affect the results and conclusions of the original Article.
The anterolateral group of the bed nucleus of the stria terminalis (BNST(ALG)) plays a critical role in a diverse array of behaviors, although little is known of the physiological properties of neurons in this region. Using whole cell patch-clamp recordings from rat BNST(ALG) slices in vitro, we describe three distinct physiological cell types. Type I neurons were characterized by the presence of a depolarizing sag in response to hyperpolarizing current injection that resembled activation of the hyperpolarization-activated cation current I(h) and a regular firing pattern in response to depolarizing current injection. Type II neurons exhibited the same depolarizing sag in response to hyperpolarizing current injection, but burst-fired in response to depolarizing current injection, which was indicative of the activation of the low-threshold calcium current I(T). Type III neurons did not exhibit a depolarizing sag in response to hyperpolarizing current injection, but instead exhibited a fast time-independent rectification that became more pronounced with increased amplitude of hyperpolarizing current injection, and was indicative of activation of the inwardly rectifying potassium current I(K(IR)). Type III neurons also exhibited a regular firing pattern in response to depolarizing current. Using voltage-clamp analysis we further characterized the primary active currents that shaped the physiological properties of these distinct cell types, including I(h), I(T), I(K(IR)), the voltage-dependent potassium current I(A), and the persistent sodium current I(NaP). The functional relevance of each cell type is discussed in relation to prior anatomical studies, as well as how these currents may interact to modulate neuronal activity within the BNST(ALG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.