In this paper, the concept of sequential
p
-metric spaces has been introduced as a generalization of usual metric spaces,
b
-metric spaces and specially of
p
-metric spaces. Several topological properties of such spaces have been discussed here. In view of this notion, we prove fixed point theorems for some classes of contractive mappings over such spaces. Supporting examples have been given in order to examine the validity of the underlying space and in respect to our proven fixed point theorems.
In this article, we consider the non-linear semigroup of \textit{enriched Kannan} contractive mapping and prove the existence of common fixed point on a non-empty closed convex subset $\mathcal C$ of a real Banach space $\mathscr X$, having uniformly normal structure.
In this paper we introduce some new types of contractive mappings by combining Caristi contraction, Ćirić-quasi contraction and weak contraction in the framework of a metric space. We prove some fixed point theorems for such type of mappings over complete metric spaces with the help of φ-diminishing property. Some examples are given in strengthening the hypothesis of our established theorems.
In this article, we introduce a new type of non-expansive mapping, namely weakly K-nonexpansive mapping, which is weaker than non-expansiveness and stronger than quasi-nonexpansiveness. We prove some weak and strong convergence results using weakly K-nonexpansive mappings. Also, we define weakly $(\alpha ,K)$
(
α
,
K
)
-nonexpansive mapping and using it prove one stability result for JF-iterative process. Some prominent examples are presented illustrating the facts. A numerical example is given to compare the convergence behavior of some known iterative algorithms for weakly K-nonexpansive mappings. Moreover, we show by example that the class of α-nonexpansive mappings due to Aoyama and Kohsaka and the class of generalized α-nonexpansive mappings due to Pant and Shukla are independent. Finally, our fixed point theorem is applied to obtain a solution of a nonlinear fractional differential equation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.