Projecting the long-term trends in energy demand is an increasingly complex endeavor due to the uncertain emerging changes in factors such as climate and policy. The existing energy-economy paradigms used to characterize the long-term trends in the energy sector do not adequately account for climate variability and change. In this paper, we propose a multi-paradigm framework for estimating the climate sensitivity of end-use energy demand that can easily be integrated with the existing energy-economy models. To illustrate the applicability of our proposed framework, we used the energy demand and climate data in the state of Indiana to train a Bayesian predictive model. We then leveraged the end-use demand trends as well as downscaled future climate scenarios to generate probabilistic estimates of the future end-use demand for space cooling, space heating and water heating, at the individual household and building level, in the residential and commercial sectors. Our results indicated that the residential load is much more sensitive to climate variability and change than the commercial load. Moreover, since the largest fraction of the residential energy demand in Indiana is attributed to heating, future warming scenarios could lead to reduced end-use demand due to lower space heating and water heating needs. In the commercial sector, the overall energy demand is expected to increase under the future warming scenarios. This is because the increased cooling load during hotter summer months will likely outpace the reduced heating load during the more temperate winter months.
The U.S. electric power system is increasingly vulnerable to the adverse impacts of extreme climate events. Supply inadequacy risk can result from climate‐induced shifts in electricity demand and/or damaged physical assets due to hydro‐meteorological hazards and climate change. In this article, we focus on the risks associated with the unanticipated climate‐induced demand shifts and propose a data‐driven approach to identify risk factors that render the electricity sector vulnerable in the face of future climate variability and change. More specifically, we have leveraged advanced supervised learning theory to identify the key predictors of climate‐sensitive demand in the residential, commercial, and industrial sectors. Our analysis indicates that variations in mean dew point temperature is the common major risk factor across all the three sectors. We have also conducted a statistical sensitivity analysis to assess the variability in the projected demand as a function of the key climate risk factor. We then propose the use of scenario‐based heat maps as a tool to communicate the inadequacy risks to stakeholders and decisionmakers. While we use the state of Ohio as a case study, our proposed approach is equally applicable to all other states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.