Self-cleaning materials have attracted immense commercial and academic interests in recent years. A major challenge is the scalable and cost-effective fabrication of three-dimensional bulk materials with remarkable self-cleaning and a desirable combination of tailored porosity, robust superhydrophobicity, excellent mechanical strength, heat insulation, and sound absorption ability. Here, self-cleaning concrete was achieved in one step through the combination of the liquid template pore formation and in situ bulk hydrophobic modification. The concrete exhibited superhydrophobicity with a high water contact angle of 166°both on the surface and inside of the sample, which qualified the sample with remarkable stain repellency and longterm stability. The water contact angle remained unchanged under continuous mechanical grinding and harsh environments, such as high temperature (450 °C in air and 650 °C in Ar) and chemical erosion. The concrete with a controllable porosity from 56.3 to 77.4% and homogeneous small pore size (∼15 μm) exhibited high compressive strength and low thermal conductivity. Furthermore, high sound absorption capacity (97%, 500 Hz) at a vibration frequency from 400 to 600 Hz was realized. With these excellent performances and characteristics and easy scalable fabrication, the concrete prepared in this work possessed a wide application prospect.
For future pollution-free renewable energy production, platinum group metal (PGM)-free electrocatalysts are highly required for oxygen reduction reaction (ORR) to avoid all possible Fenton reactions and to make fuel cell more economical. Therefore, in this study, to overcome traditional electrocatalyst limitations, we applied facile method to synthesize robust mesoporous CrN-reduced graphene oxide (rGO) nanocomposite with MnO (thereafter, Cr/rGO composite with MnO) as an electrocatalyst by efficient one-step sol-gel method by ammonolysis at 900°C for 9 h. Synthesized porous structures of Cr/rGO nanocomposite with MnO have the highest estimated surface area of 379 m2·g−1, higher than that of the carbon black (216 m2·gcat-1) support, and almost uniform pore size distribution of about 4 nm. The Cr/rGO nanocomposites with MnO exhibit enhanced electrocatalytic ORR properties with estimated high half-wave potential of 0.89 V vs. the reversible hydrogen electrode (RHE) and current density of 5.90 mA·cm−2, compared with that of benchmark 20% Pt/C electrode (0.84 V, 5.50 mA·cm−2), with noticeable methanol tolerance and significantly enhanced stability in alkaline media. Hence, the Cr/rGO nanocomposites with MnO showed superior performance to 20 wt.% Pt/C; their half-wave potentials were 50 mV high, and the limiting current density was 0.40 mA·cm−2 high. In alkaline anion exchange membrane fuel cell (AAEMFC) setup, this cell delivers a power density of 309 mW·cm−2 for Cr/rGO nanocomposite with MnO, demonstrating its potential use for energy conversion applications. The nanosized Cr/rGO metallic crystalline nanocomposites with MnO gave a large active surface area owing to the presence of rGO, which also has an effect on the charge distribution and electronic states. Hence, it may be the reason that Cr/rGO nanocomposites with MnO, acting as more active and more stable catalytic materials, boosted the electrocatalytic properties. The synergistic consequence in nanosized Cr/rGO composite with MnO imparts the materials' high electron mobility and thus robust ORR activity in 0.1 M of KOH solution. This potential method is highly efficient for synthesis of large-scale, non-noble-metal-based electrocatalytic (NNME) materials (i.e., Cr/rGO nanocomposite with MnO) on the gram level and is efficient in preparing novel, low-cost, and more stable non-PGM catalysts for fuel cells.
Based on (hybrid) first-principles calculations, material properties (structural, electronic, vibrational, optical, and photocatalytic) of van der Waals heterostructures and their corresponding monolayers (transition metal dichalcogenides and MXenes) are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.