Ten specimens of coral reefs were collected from the Red Sea in the Ein El-Sukhna region. Fungal isolation was done using two media, Dextrose Yeast Extract Agar (DYA) and Rose Bengal Agar (RBA). The morphological traits identified 18 fungal isolates belonging to the phyla Ascomycota, Mucoromycota and Deuteromycota. Five genera in three orders have been isolated: Eutrotiales (Aspergillus, Penicillium and Byssochlamys), Mucorales (Rhizopus) and Moniliales (Curvularia). The heat mapping clustering of the isolated fungi declared that Aspergillus and Penicillium were the most frequently isolate fungi in coral reefs. It was found that A. fumigatus colonised eight coral samples with 80% colonisation rate. Moreover, about 50% of the isolated fungal species were specific to one coral reef only such as A.candidus and A.carneus isolated from Isophyllastrea rigida only, A.japonicus and A.ochraceopetaliformis from Glaxaea fascicularis, A.niger van Tieghem from Porites astreoides, A.sydowii, A.terreus and P.waksmanii from Cladocora arbuscula, P.janthinellum from Pterogorgia guadalupensis and Curvularia tuberculata, Byssochlamys spectabilis and Rhizopus oryzae from Acropora humilis. Biological activities (antimicrobial, antioxidant antiradical and cytotoxicity) of the most predominant fungal species were investigated. The antimicrobial activity of coral fungal filtrates were investigated against six pathogenic bacteria including Escherichia coli ATCC11775, Neisseria gonorrhoeae ATCC19424, Pseudomonas aeruginosa ATCC10145, Streptococcus faecalis ATCC19433, Staphylococcus aureus subsp. aureus ATCC25923, Bacillus subtilis subsp. spizizenii ATCC6633 and two pathogenic yeast including Candida albicans ATCC7102 and Candida parapsilosis ATCC22019. Most of these fungal filtrates exhibited moderate to high antibacterial activities against both gram positive and gram negative bacteria, however it showed relatively low bioactivity towards the pathogenic Candida species. Investigating the free radical scavenging activity using DPPH reagent showed low to moderate bioactivities. The highest cytotoxic activity against liver cancer cell line Hep-G2 with an IC 50 values of 18.8 µg/ml was exhibited by Aspergillus ochraceopetaliformis MN083316 and a metabolomics study was done on the ethyl acetate extract of this strain using LC-ESI-MS fingerprints leading to the isolation and purification of compound 1. Using 1D and 2D NMR techniques compound 1 was identified as ditryptophenaline. Compound 1 exhibited a strong antimicrobial, antioxidant activities as well as cytotoxic activities against MCF-7 and HEPG2 with IC 50 values of 5.8 and 7.6 mmole, respectively.The objective of this study, isolation of Coral-reef associated fungi and studying their biological activities to produce the most active secondary metabolite which might possess a novel biological activity. ARTICLE HISTORY
Fusarium crown and foot rot, caused by F. solani f. sp. cucurbitae, are major fungal diseases affecting zucchini and other cucurbits. Despite the efficacy of synthetic fungicides, their health and environmental hazards have highlighted the urgent need for safer alternatives, such as phytochemical-based biocides. Owing to the upregulation of the plant secondary metabolism under stressful conditions, bioprospecting in harsh environments could reveal ore plants for bioactive metabolites. In this study, thirteen wild plants were collected from their natural habitat in a semiarid environment (Yanbu, Saudi Arabia) and extracted to obtain phenolics rich extracts. Total polyphenols, flavonoids, antioxidant capacities and the antifungal activities of the extracts against a pathogenic isolate of F. solani were assessed. Fusarium solani was isolated from infected zucchini and characterized by scanning electron microscopy. Hierarchical clustering analysis of the phytochemical screening and in vitro bioactivity revealed that Rosmarinus officinalis, Pulicaria crispa, Achillea falcata and Haloxylon salicornicum were the richest in polyphenols and the most powerful against F. solani. Further, the extracts of these four plants significantly decreased the disease incidence in zucchini, where P. crispa was the premier. Interestingly, results of transmission electron microscopy revealed that extract of P. crispa, as a representative of the powerful group, induced ultrastructural disorders in fungal cells. Therefore, this study suggests the use of R. officinalis, P. crispa, A. falcata and H. salicornicum grown in semi-arid environments as ore plants to develop phytochemical-based biocides against Fusarium crown and foot rot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.