The reports after major earthquakes indicate that the earthquake-induced pounding between insufficiently separated buildings may lead to significant damage or even total collapse of structures. An intensive study has recently been carried out on mitigation of pounding hazards so as to minimize the structural damages or prevent collisions at all. The aim of this paper is to investigate the effectiveness of the method when two adjacent three-storey buildings with different (substantially different) dynamic properties are connected at each storey level by link elements (springs, dashpots or viscoelastic elements). The results of the study indicate that connecting the structures by additional link elements can be very beneficial for the lighter and more flexible building. The largest decrease in the response of the structure has been obtained for links with large stiffness or damping values, which stands for the case when two buildings are fully connected and vibrate in-phase. Moreover, by comparing the effectiveness of different types of link elements, it has been confirmed that the use of viscoelastic elements reduces the peak displacement of the structure at lower stiffness and damping values comparing to the case when spring and dashpot elements are applied alone. On the other hand, the results of the study demonstrate that applying the additional link elements does not really change the response of the heavier and stiffer building. The final conclusion of the study indicates that linking two buildings allows us to reduce the in-between gap size substantially while structural pounding can be still prevented.
The present paper investigates the coupled effect of the supporting soil flexibility and pounding between neighbouring, insufficiently separated equal height buildings under earthquake excitation. Two adjacent three-storey structures, modelled as inelastic lumped mass systems with different structural characteristics, have been considered in the study. The models have been excited using a suit of ground motions with different peak ground accelerations and recorded at different soil types. A nonlinear viscoelastic pounding force model has been employed in order to effectively capture impact forces during collisions. Spring-dashpot elements have been incorporated to simulate the horizontal and rotational movements of the supporting soil. The results of the numerical simulations, in the form of the structural nonlinear responses as well as the time-histories of energy dissipated during pounding-involved vibrations, are presented in the paper. In addition, the variation in storeys peak responses and peak dissipated energies for different gap sizes are also shown and comparisons are made with the results obtained for colliding buildings with fixed-base supports. Observations regarding the incorporation of the soil-structure interaction and its effect on the responses obtained are discussed. The results of the study indicate that the soil-structure interaction significantly influences the pounding-involved responses of equal height buildings during earthquakes, especially the response of the lighter and more flexible structure. It has been found that the soil flexibility decreases storey peak displacements, peak impact forces
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.