Nanofibrillated cellulose, obtained from rice straw agricultural wastes was used as a substrate for the preparation of a new injectable and mineralized hydrogel for bone regeneration. Tetramethyl pyridine oxyl (TEMPO) oxidized nanofibrillated cellulose, was mineralized through the incorporation of a prepared and characterized biphasic calcium phosphate at a fixed ratio of 50 wt%. The TEMPO-oxidized rice straw nanofibrillated cellulose was characterized using transmission electron microscopy, Fourier transform infrared, and carboxylic content determination. The injectability and viscosity of the prepared hydrogel were evaluated using universal testing machine and rheometer testing, respectively. Cytotoxicity and alkaline phosphatase level tests on osteoblast like-cells for in vitro assessment of the biocompatibility were investigated. Results revealed that the isolated rice straw nanofibrillated cellulose is a nanocomposite of the cellulose nanofibers and silica nanoparticles. Rheological properties of the tested materials are suitable for use as injectable material and of nontoxic effect on osteoblast-like cells, as revealed by the positive alkaline phosphate assay. However, nanofibrillated cellulose/ biphasic calcium phosphate hydrogel showed higher cytotoxicity and lower bioactivity test results when compared to that of nanofibrillated cellulose.
Periodontium regeneration is a highly challenging process as it requires the regeneration of three different tissues simultaneously. The aim of this study was to develop a composite material that can be easily applied and can sufficiently deliver essential growth factors and progenitor cells for periodontal tissue regeneration. Freeze-dried platelet concentrate (FDPC) was prepared and incorporated in a thermo-sensitive chitosan/β-glycerol phosphate (β-GP) hydrogel at concentrations of 5, 10, or 15 mg/ml. The viscosity of the hydrogels was investigated as the temperature rises from 25 °C to 37 °C and the release kinetics of transforming growth factor (TGF-β1), platelet-derived growth factor (PDGF-BB) and insulin-like growth factor (IGF-1) were investigated at four time points (1 h, 1 day, 1 week, 2 weeks). Periodontal ligament stem cells (PDLSCs) were isolated from human third molars and encapsulated in the different hydrogel groups. Their viability was investigated after 7 days in culture in comparison to standard culture conditions and non FDPC-loaded hydrogel. Results showed that loading FDPC in the hydrogel lowered the initial viscosity in comparison to the unloaded control group and did not affect the sol-gel transition in any group. All FDPC-loaded hydrogel groups exhibited sustained release of TGF-β1 and PDGF-BB for two weeks with significant difference between the different concentrations. The loading of 10 and 15 mg/ml of FDPC in the hydrogel increased the PDLSCs viability significantly compared to the unloaded hydrogel and was comparable to the standard culture conditions. Accordingly, it may be concluded that loading FDPC in a chitosan/β-GP hydrogel can offer enhanced injectability, a sustained release of growth factors and increased viability of encapsulated stem cells which can be beneficial in periodontium tissue regeneration.
Objective
Since there is no material in the market met all the ideal requirements of an impression material, thus in an attempt to find one, hybridization between the two most commonly used impression materials were done. The aim of the hybridization was to obtain a new material combining the good merits of both and eliminate their shortcomings. Thus, this study aimed to assess the impact of hybridization between polyether with addition silicone on tear strength and elastic recovery of the new material and compare such effect with regard to parent materials.
Results
A polyether (PE), polyvinyl siloxanse (PVS) and vinyl polyether silicone (VPES) hybrid elastomers were used in the present study. Tear strength was measured one hour after setting time of each material according to the manufacturer and the three materials showed statistically comparable tear strength in N/mm. Elastic recovery was evaluated one minute after the setting time recommended by the manufacturer. The three materials were statistically insignificant from each other, and all met the ISO4823 requirement of having greater than 96.5% recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.