Objectives The aim of this study was to assess the accuracy, reliability, and cerebral microbleed (CMB) detection performance of 2-minute quantitative susceptibility mapping (QSM) from 3-dimensional echo-planar imaging (3D-EPI). Materials and Methods Gadolinium phantom study was conducted using 3D-EPI, single–echo time (TE), and multi-TE gradient-recalled echo (GRE) sequences on two 3-T magnetic resonance (MR) scanners to assess the accuracy between measured and theoretical susceptibility values. The institutional review board approved this prospective study, and 40 healthy volunteers were enrolled with written consent between April 2018 and October 2019. Each underwent 3D-EPI, single-TE, and multi-TE GRE sequences consecutively on one 3-T MR scanner, and QSMs were calculated to assess the reliability of 3D-EPI QSM. Intraclass correlation coefficient (ICC), linear regression, and Bland-Altman plots were calculated. Patients with CMB who underwent both 3D-EPI and GRE QSM scans were retrospectively enrolled. Two radiologists evaluated images independently, and Cohen κ coefficients were calculated to compare CMB detection performance. Results Phantom study showed excellent validity of 3D-EPI QSM on both MR scanners: Skyra, R 2 = 0.996, P < 0.001, ICC = 0.997, mean difference, −2 ppb (95% confidence interval [CI], −45 to 40 ppb); Prisma, R 2 = 0.992, P < 0.001, ICC = 0.988, mean difference, 15 ppb (95% CI, −67 to 97 ppb). A human study of 40 healthy volunteers (59 ± 13 years, 25 women) showed excellent reliability with 3D-EPI QSM for both single-TE and multi-TE GRE (R 2 = 0.981, P < 0.001, ICC = 0.988; R 2 = 0.983, P < 0.001, ICC = 0.990, respectively), supported by a Bland-Altman mean difference of 4 ppb (95% CI, −15 to 23 ppb) for single-TE GRE and 3 ppb (95% CI, −15 to 20 ppb) for multi-TE GRE. The CMB detection performance evaluation from 38 patients (51 ± 20 years, 20 women) showed almost perfect agreement between 3D-EPI and GRE QSM for both raters (κ = 0.923 and 0.942, P < 0.001). Conclusions Faster QSM from 3D-EPI demonstrated excellent accuracy, reliability, and CMB detection performance.
Diffusion-weighted magnetic resonance imaging is prone to have susceptibility artifacts in an inhomogeneous magnetic field. We compared distortion and artifacts among three diffusion acquisition techniques (single-shot echo-planar imaging [SS-EPI DWI], readout-segmented EPI [RESOLVE DWI], and 2D turbo gradient- and spin-echo diffusion-weighted imaging with non-Cartesian BLADE trajectory [TGSE-BLADE DWI]) in healthy volunteers and in patients with a cerebral aneurysm clip. Seventeen healthy volunteers and 20 patients who had undergone surgical cerebral aneurysm clipping were prospectively enrolled. SS-EPI DWI, RESOLVE DWI, and TGSE-BLADE DWI of the brain were performed using 3 T scanners. Distortion was the least in TGSE-BLADE DWI, and lower in RESOLVE DWI than SS-EPI DWI near air–bone interfaces in healthy volunteers (P < 0.001). Length of clip-induced artifact and distortion near the metal clip were the least in TGSE-BLADE DWI, and lower in RESOLVE DWI than SS-EPI DWI (P < 0.01). Image quality scores for geometric distortion, susceptibility artifacts, and overall image quality in both healthy volunteers and patients were the best in TGSE-BLADE DWI, and better in RESOLVE DWI than SS-EPI DWI (P < 0.001). Among the three DWI sequences, image quality was the best in TGSE-BLADE DWI in terms of distortion and artifacts, in both healthy volunteers and patients with an aneurysm clip.
Background Hypothalamic–pituitary–thyroid (HPT) maturation has not been extensively evaluated using neonatal MRI, even though both structures are visualized on MRI. Hypothesis That signal intensity and volume of pituitary and thyroid (T) glands on MRI in neonates may be interrelated. Study Type Retrospective. Subjects In all, 102 participants. Field Strength/Sequence 3.0T, T1‐weighted pointwise encoding time reduction with radial acquisition (PETRA). Assessment The volume of interest of the anterior pituitary (AP), posterior pituitary (PP), and T on MRI were defined on T1‐PETRA by two radiologists, and volumes of AP (AP_vol) and thyroid (T_vol) were calculated. Gestational age (GA), chronological age (CA), GA+CA, birth weight (BW), and thyroid function were recorded. Mean and maximum signal intensities of AP, PP, and T were normalized using signals from the pons and spinal cord as follows: signal ratio of anterior pituitary/pons (AP/pons), signal ratio of posterior pituitary/pons (PP/pons), and signal ratio of thyroid/cord (T/cord) T/cord, respectively. Statistical Tests Correlations between signal intensity and volume measures and GA, CA, GA+CA, and BW were assessed using Pearson's correlation coefficient or Spearman's rank correlation coefficient. Thyroid function analysis and Tmean/cord, Tmax/cord, and T_vol were evaluated using the Steel–Dwass test. Results APmean/pons correlated positively with GA (ρ = 0.62, P < 0.001) and BW (ρ = 0.74, P < 0.001), and negatively with CA (ρ = −0.86, P < 0.001) and GA+CA (ρ = −0.46, P < 0.001). PPmean/pons correlated positively with GA (ρ = 0.49, P < 0.001) and BW (ρ = 0.63, P < 0.001), and negatively with CA (ρ = −0.70, P < 0.001) and GA+CA (r = −0.38, P < 0.001). Tmean/cord correlated positively with GA (ρ = 0.48, P < 0.001) and BW (ρ = 0.55, P < 0.001), and negatively with CA (ρ = −0.59, P < 0.001) and GA+CA (ρ = −0.22, P = 0.03). AP_vol correlated positively with GA (ρ = 0.68, P < 0.001) and BW (ρ = 0.73, P < 0.001), and negatively with CA (ρ = −0.72, P < 0.001). T_vol correlated positively with GA (ρ = 0.50, P < 0.001) and BW (ρ = 0.61, P < 0.001), and negatively with CA (ρ = −0.54, P < 0.001). APmean/pons correlated positively with Tmean/cord (ρ = 0.61, P < 0.001). Data Conclusion Signal and volume of pituitary and thyroid glands correlated positively with GA and BW, and negatively with CA in neonates. Level of Evidence 4 Technical Efficacy Stage 5
Hemorrhage inside the mammillary bodies (MMBs) is known to be one of the findings of Wernicke encephalopathy. Brain MRI of two patients with Wernicke-Korsakoff syndrome (WKS) demonstrated high susceptibility values representing hemosiderin deposition in MMBs by using quantitative susceptibility mapping (QSM). QSM provided additional information of susceptibility values to susceptibility-weighted imaging in diagnosis of WKS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.