It is known from both theory and experiments that introducing time delays into the communication network of mobile-agent swarms produces coherent rotational patterns. Often such spatiotemporal rotations can be bistable with other swarming patterns, such as milling and flocking. Yet, most known bifurcation results related to delay-coupled swarms rely on inaccurate mean-field techniques. As a consequence, the utility of applying macroscopic theory as a guide for predicting and controlling swarms of mobile robots has been limited. To overcome this limitation, we perform an exact stability analysis of two primary swarming patterns in a general model with time-delayed interactions. By correctly identifying the relevant spatio-temporal modes that determine stability in the presence of time delay, we are able to accurately predict bistability and unstable oscillations in large swarm simulations-laying the groundwork for comparisons to robotics experiments.
Dynamical emergent patterns of swarms are now fairly well established in nature and include flocking and rotational states. Recently, there has been great interest in engineering and physics to create artificial self-propelled agents that communicate over a network and operate with simple rules, with the goal of creating emergent self-organizing swarm patterns. In this paper, we show that when communicating networks have range dependent delays, rotational states, which are typically periodic, undergo a bifurcation and create swarm dynamics on a torus. The observed bifurcation yields additional frequencies into the dynamics, which may lead to quasi-periodic behavior of the swarm.
We consider a 13-dimensional age-structured discrete red coral population model varying with respect to a fitness parameter. Our numerical results give a bifurcation diagram of both equilibria and stable invariant curves of orbits. We observe that not only for low levels of fitness, but also for high levels of fitness, populations are extremely vulnerable, in that they spend long time periods near extinction. We then use computer-assisted proofs techniques to rigorously validate the set of regular and bifurcation fixed points that have been found numerically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.