We have proposed the use of a soliton pulse that propagates within a modified add-drop filter, which is made of a GaAsInP/P material. It is in the form of a Panda-ring resonator, from which a bright/dark soliton pulse is input into a system via an input port. The conversion between bright and dark soliton pulses is introduced at the 3dB coupler, i.e. the change in phase of π⁄2. But it is not superimposed each other. The output solitons obtained at the through and drop ports are bight and dark solitons respectively. Both signals can be used to form "ON' and "OFF" or "1" and "0", which are useful for the digital bit generation. The switching speed of the system can be improved by employing the two nonlinear side rings. In application, secure output bits can be arranged by using the alternative input solitons or the control ports, where the input bright and dark solitons can be converted into output bits. This means that the output bits can be randomly switched between "1" and "0", which can be identified by the sender. Moreover, the additional information can be multiplexed via the add port and transmitted in either free space or optical fiber via the whispering gallery mode and through port outputs. Finally, the electro-optic switching can be transferred and the electronic switching by the embedded stacked layers, where the ultrafast switching of light input can lead the ultrafast electrical switching speed. The switching speed of ~5 fs and the offset time of ~220 fs of the "on" and OFF" are achieved by using the selected ring parameters.
A dark-bright soliton conversion is used to perform the two arithmetic logic unit(ALU) operations namely adder and subtractor operations. The advantage of the system such as power stability, non-dispersion and the dark-bright soliton phase conversion control can be obtained. The input source into the circuit is the bright soliton pulse, with the pulse width of 35 ps, the peak power at 1.55 µm is 1 mW. By using the dark-bright soliton conversion pair, the generated logic bits can be controlled, and the secure bits can be achieved. The simulation results show the output signal with a minimum loss of only 0.1% with respect to a low input power of 1 mW, and ultra-fast response time of about 0.30 ps can be achieved. It gives the ultra-high bandwidth of more than 40 Gbits-1. The circuit composes 6 microring resonators made of InGaAsP/InP material with smaller ring radii of 1.5 µm, and the total physical scale of the circuit less than 100 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.