Opn5 (neuropsin) belongs to an independent group separated from the other six groups in the phylogenetic tree of opsins, for which little information of absorption characteristics and molecular properties of the members is available. Here we show that the chicken Opn5 (cOpn5m) is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. The recombinant expression of cOpn5m in HEK 293s cells followed by the addition of 11-cis-and all-trans-retinal produced UV light-absorbing and visible lightabsorbing forms, respectively. These forms were interconvertible by UV and visible light irradiations, respectively, indicating that cOpn5m is a bistable pigment. The absorption maxima of these forms were estimated to be 360 and 474 nm, respectively. The GTPγS binding assay clearly showed that the visible light-absorbing form having all-trans-retinal activates Gi type of G protein, whereas no Gt or Gq activation ability was observed. Immunohistochemical studies using an antibody against cOpn5m clearly showed that this pigment is localized within some types of amacrine cells and some cells in the ganglion cell layer of the retinas, the vast majority of cells in the pineal gland and serotonin-positive cells in the paraventricular organ. Because cOpn5m is the only UV-sensitive opsin among the opsins found so far in chicken, this study provides the molecular basis for UV reception in chicken.G protein-coupled receptor | nonvisual photoreception | phototransduction
Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect’s life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb’Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb’jhamt. In contrast, JH production is up-regulated by Decapentaplegic (Gb’Dpp) and Glass-bottom boat/60A (Gb’Gbb) signaling that occurs as part of the transcriptional activation of Gb’jhamt. Gb’Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb’myo expression is suppressed, the activation of Gb’jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb’myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb’myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5–8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development.
Background: Opn5 is considered to regulate nonvisual photoreception in the retina and brain of animals. Results: Mouse and primate UV-sensitive Opn5 along with retinoid isomerase are localized in the preoptic hypothalamus. Conclusion: Mammalian Opn5 can function as a high sensitivity photosensor in the deep brain with the assistance of 11-cisretinal supplying system. Significance: Mammals, including humans, may detect short wavelength light within the brain via Opn5.
Fibroblast growth factor (FGF) signaling is crucial for the induction and growth of the ear, a sensory organ that involves intimate tissue interactions. Here, we report the abnormality of Fgf10 null ear and the identification of a cis-regulatory element directing otic expression of Fgf10. In Fgf10 null inner ears, we found that the initial development of semicircular, vestibular, and cochlear divisions is roughly normal, after which there are abnormalities of semicircular canal/cristae and vestibular development. The mutant semicircular disks remain without canal formation by the perinatal stage. To elucidate regulation of the Fgf10 expression during inner ear development, we isolated a 6.6-kb fragment of its 5-upstream region and examined its transcriptional activity with transgenic mice, using a lacZ-reporter system. From comparison of the mouse sequences of the 6.6-kb fragment with corresponding sequences of the human and chicken
Most of our knowledge of insect genomes comes from Holometabolous species, which undergo complete metamorphosis and have genomes typically under 2 Gb with little signs of DNA methylation. In contrast, Hemimetabolous insects undergo the presumed ancestral process of incomplete metamorphosis, and have larger genomes with high levels of DNA methylation. Hemimetabolous species from the Orthopteran order (grasshoppers and crickets) have some of the largest known insect genomes. What drives the evolution of these unusual insect genome sizes, remains unknown. Here we report the sequencing, assembly and annotation of the 1.66-Gb genome of the Mediterranean field cricket Gryllus bimaculatus, and the annotation of the 1.60-Gb genome of the Hawaiian cricket Laupala kohalensis. We compare these two cricket genomes with those of 14 additional insects and find evidence that hemimetabolous genomes expanded due to transposable element activity. Based on the ratio of observed to expected CpG sites, we find higher conservation and stronger purifying selection of methylated genes than non-methylated genes. Finally, our analysis suggests an expansion of the pickpocket class V gene family in crickets, which we speculate might play a role in the evolution of cricket courtship, including their characteristic chirping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.