Elastomers are being increasingly used for sealing and other applications in the oil and gas industry. Specifically developed elastomers possess durable properties and have the ability to withstand detrimental effects of heat, chemicals, and harsh environments. For successful modeling and simulation of various downhole processes, it is very important to determine the behavior of elastomer materials under realistic well conditions. Of special interest is the class known as swelling elastomers. This article reports some results from experiments conducted on mechanical testing and characterization of an inert (nonswelling) and a water-swelling elastomer (both belonging to the EPDM family) used for sealing purposes by a local petroleum development firm. Experiments were designed and conducted in accordance with standard ASTM test methods. Apart from regularly available testing equipment, some simple test rigs and fixtures were designed and fabricated. Elastomer behavior was tested for hardness, compression set (at different temperatures and for different periods of time), tensile set (for different periods of time), tensile properties (fracture strength and percent elongation), and swelling. In the swelling test, different sample geometries (unconfined samples and samples mounted on steel plate) were tested for a total duration of 1000 h (roughly 45 days) in salt solutions of different concentrations and at different temperatures. Results show that compression set increases with increasing temperature and testing time, while room temperature tensile set also increases with longer testing time. Compared to the inert elastomer (exhibiting nonlinear elastic behavior like normal rubbers), swelling elastomer surprisingly showed linear stress—strain response. As expected, the inert elastomer did not exhibit any change in volume, while the swelling elastomer showed significant volume/thickness increase with increasing test temperature and decreasing salt concentration.
Belonging to the class of chromium tool steels, AISI H11 possesses very good toughness and hardness, and is therefore suitable for hot metalforming jobs performed at very high loads. Mostly used in fabrication of helicopter rotor blades, H11 also has great potential as a die steel in hot-work forging and extrusion. This alloy steel can be heat treated to increase the service life and dimensional accuracy of the die and tooling. Main aim of the current investigation was to formulate an optimum heat treatment strategy for H11 steel, especially for hot work applications. High-speed milling and electric discharge machining were used to fabricate samples for tensile and impact testing. After various types of heat treatment (annealing, austenitizing, air cooling or oil quenching, single and double tempering), these samples were tested for hardness, toughness (impact), yield strength, tensile strength, and ductility. Microstructural analysis was also performed to analyze the effect of heat treatment on mechanical properties. As tempering temperature increases, hardness initially increases and then starts to gradually decrease; impact strength first decreases and then increases; and yield strength exhibits a fluctuating pattern of initial decline followed by an increase and another decrease. Even though H11 steel is highly suitable for both hot and cold-work, it is surprisingly not a common choice for metalworking dies and tools. Results presented here can encourage die designers and hot-work practitioners to explore the versatility of this tool steel, and to adopt appropriate heat treatment strategies for different applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.