This article presents ViEWS – a political violence early-warning system that seeks to be maximally transparent, publicly available, and have uniform coverage, and sketches the methodological innovations required to achieve these objectives. ViEWS produces monthly forecasts at the country and subnational level for 36 months into the future and all three UCDP types of organized violence: state-based conflict, non-state conflict, and one-sided violence in Africa. The article presents the methodology and data behind these forecasts, evaluates their predictive performance, provides selected forecasts for October 2018 through October 2021, and indicates future extensions. ViEWS is built as an ensemble of constituent models designed to optimize its predictions. Each of these represents a theme that the conflict research literature suggests is relevant, or implements a specific statistical/machine-learning approach. Current forecasts indicate a persistence of conflict in regions in Africa with a recent history of political violence but also alert to new conflicts such as in Southern Cameroon and Northern Mozambique. The subsequent evaluation additionally shows that ViEWS is able to accurately capture the long-term behavior of established political violence, as well as diffusion processes such as the spread of violence in Cameroon. The performance demonstrated here indicates that ViEWS can be a useful complement to non-public conflict-warning systems, and also serves as a reference against which future improvements can be evaluated.
Highlights d Longitudinal variation in immune cell composition during 1 year d Interindividual variation can be described along a principal curve d Immune cell and protein relationships are inferred d Variability over time correlates with markers of metabolic health
BackgroundClustering sequences into families has long been an important step in characterization of genes and proteins. There are many algorithms developed for this purpose, most of which are based on either direct similarity between gene pairs or some sort of network structure, where weights on edges of constructed graphs are based on similarity. However, conserved synteny is an important signal that can help distinguish homology and it has not been utilized to its fullest potential.ResultsHere, we present GenFamClust, a pipeline that combines the network properties of sequence similarity and synteny to assess homology relationship and merge known homologs into groups of gene families. GenFamClust identifies homologs in a more informed and accurate manner as compared to similarity based approaches. We tested our method against the Neighborhood Correlation method on two diverse datasets consisting of fully sequenced genomes of eukaryotes and synthetic data.ConclusionsThe results obtained from both datasets confirm that synteny helps determine homology and GenFamClust improves on Neighborhood Correlation method. The accuracy as well as the definition of synteny scores is the most valuable contribution of GenFamClust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.