In order to implement a damage detection strategy and assess the condition of a structure, Structural Health Monitoring (SHM) as a process plays a key role in structural reliability. This paper aims to present a methodology for online detection of damages that may occur during a strong ground excitation. In this regard, Empirical Mode Decomposition (EMD) is superseded by Ensemble Empirical Mode Decomposition (EEMD) in the Hilbert Huang Transformation (HHT). Although analogous with EMD, EEMD brings about more appropriate Intrinsic Mode Functions (IMFs). IMFs are employed to assess the rst-mode frequency and mode shape. Afterwards, Arti cial Neural Network (ANN) is applied to predict story acceleration based on previously measured values. Because ANN functions precisely, any congruency between predicted and measured accelerations indicates the onset of damage. Then, another ANN method is applied to estimate the sti ness matrix. Though the rst-mode shape and frequency are calculated in advance, the process essentially requires an inverse problem to be solved in order to nd sti ness matrix, which is done by ANN. This algorithm is implemented on moment-resisting steel frames, and the results show the reliability of the proposed methodology for online prediction of structural damage.
Emergency response to incidents such as accidents and urban fires is one of the most pressing problems faced by communities across the globe. In the last fifty years, researchers have developed statistical, analytical, and algorithmic approaches for designing emergency response management (ERM) systems. In this survey, we present models for incident prediction, resource allocation, and dispatch concerning urban emergency incidents. We highlight the strengths and weaknesses of prior work in this domain and explore the similarities and differences between different incident types. Finally, we present future research directions. To the best of our knowledge, our work is the first comprehensive survey that explores the entirety of ERM systems.
Principled decision making in emergency response management necessitates the use of statistical models that predict the spatial-temporal likelihood of incident occurrence. These statistical models are then used for proactive stationing which allocates first responders across the spatial area in order to reduce overall response time. Traditional methods that simply aggregate past incidents over space and time fail to make useful shortterm predictions when the spatial region is large and focused on fine-grained spatial entities like interstate highway networks. This is partially due to the sparsity of incidents with respect to the area in consideration. Further, accidents are affected by several covariates, and collecting, cleaning, and managing multiple streams of data from various sources is challenging for large spatial areas. In this paper, we highlight how this problem is being solved for the state of Tennessee, a state in the USA with a total area of over 100,000 sq. km. Our pipeline, based on a combination of synthetic resampling, non-spatial clustering, and learning from data can efficiently forecast the spatial and temporal dynamics of accident occurrence, even under sparse conditions. In the paper, we describe our pipeline that uses data related to roadway geometry, weather, historical accidents, and real-time traffic congestion to aid accident forecasting. To understand how our forecasting model can affect allocation and dispatch, we improve upon a classical resource allocation approach. Experimental results show that our approach can significantly reduce response times in the field in comparison with current approaches followed by first responders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.