The combination of industrial and domestic wastewater in municipal WWTPs (waste water treatment plants) may be economically profitable, but it increases the difficulty of treatment, and also has some detrimental effects on the biomass and causes a low-quality final effluent. The present study evaluates the treatment process both in the presence and absence of heavy metals using ASM3 (activated sludge model no.3) so as to improve the model by means of incorporating other novel inhibitory kinetic and settler models. The results reveal that the presence of heavy metal, a case study for copper and cadmium at a concentration of 0.7 mgL−1 in a biological treatment system has a negative effect on heterotrophic bacteria concentration by 25.00 %, and 8.76 % respectively. Meanwhile, there are no important changes in COD (chemical oxygen demand), SS (total suspended solids) and TN (total nitrogen) in the final effluent in the conventional system. However, all these parameters are acceptable and consistent with EU Commission Directives. The results indicate that ASM3 can predict and provide an opportunity of the operation for an activated sludge wastewater treatment plant that receives the effluent from an industrial plant.
Determination of the optimal aeration profile for an activated sludge system in which nitrification and denitrification take place sequentially in a single reactor (alternating aerobic-anoxic) is an attractive optimization problem because of complexities involved in, and high computational times required for solution. The rigorous dynamic modeling and start-up simulation of such a system, together with aeration profile optimization by an evolutionary algorithm (EA), were tackled in a previous study. In this paper an easy-to-implement dynamic optimization technique based on sequential quadratic programming method and control vector parameterization approach is provided. In comparison with EA, the proposed algorithm gives better results in shorter computation times. main operational cost. Determining the optimum durations of consecutive aeration and non-aeration periods in order to minimize the energy consumption is a nontrivial dynamic optimization problem. The dynamical character comes from the complicated dynamic model Figure 1. Schematic diagram of an activated sludge system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.