Graphical abstract2 Highlights ANNs-solved vibration based parametric identification studies are reviewed. Factors which affect identification result are discussed. Pros and cons of ANN approaches are mentioned. 1• Fundamentals of ANNs. 2• Dynamic behavior analysis for parametric identifications.• Reason for adopting ANNs to vibrational inverse identifications. 3• Earlier ANN approaches to different vibrational parametric identifications.--Signal pre-processing techniques --Input-output schemes --ANN models 4• Factors that affect ANNs performance for vibrational paramteric identification. 5• Advantages and disadvantages of ANN approaches. 6• Suggestions to potential researchers.• Experimental validation of authors' suggestion based on the literature.3 Suggestions are given to potential researchers based on the discussion. Analysis with experimental results is provided to justify some point of view. AbstractVibration behavior of any solid structure reveals certain dynamic characteristics and property parameters of that structure. Inverse problems dealing with vibration response utilize the response signals to find out input factors and/or certain structural properties. Due to certain drawbacks of traditional solutions to inverse problems, ANNs have gained a major popularity in this field. This paper reviews some earlier researches where ANNs were applied to solve different vibration-based inverse parametric identification problems. The adoption of different ANN algorithms, input-output schemes and required signal processing were denoted in considerable detail. In addition, a number of issues have been reported, including the factors that affect ANNs' prediction, as well as the advantage and disadvantage of ANN approaches with respect to general inverse methods. Based on the critical analysis, suggestions to potential researchers have also been provided for future scopes.
This paper proposes a process of Handwritten Character Recognition to recognize and convert images of individual Bangla handwritten characters into electronically editable format, which will create opportunities for further research and can also have various practical applications. The dataset used in this experiment is the BanglaLekha-Isolated dataset [1]. Using Convolutional Neural Network, this model achieves 91.81% accuracy on the alphabets (50 character classes) on the base dataset, and after expanding the number of images to 200,000 using data augmentation, the accuracy achieved on the test set is 95.25%. The model was hosted on a web server for the ease of testing and interaction with the model. Furthermore, a comparison with other machine learning approaches is presented.
Detecting emotion from facial expression has become an urgent need because of its immense applications in artificial intelligence such as human-computer collaboration, data-driven animation, human-robot communication etc. Since it is a demanding and interesting problem in computer vision, several works had been conducted regarding this topic. The objective of this research is to develop a facial expression recognition system based on convolutional neural network with data augmentation. This approach enables to classify seven basic emotions consist of angry, disgust, fear, happy, neutral, sad and surprise from image data. Convolutional neural network with data augmentation leads to higher validation accuracy than the other existing models (which is 96.24%) as well as helps to overcome their limitations.
Since wind power is directly influenced by wind speed, long-term wind speed forecasting (WSF) plays an important role for wind farm installation. WSF is essential for controlling, energy management and scheduled wind power generation in wind farm. The proposed investigation in this paper provides 30-days-ahead WSF. Nonlinear Autoregressive (NAR) and Nonlinear Autoregressive Exogenous (NARX) Neural Network (NN) with different network settings have been used to facilitate the wind power generation. The essence of this study is that it compares the effect of activation functions (namely, tansig and logsig) in the performance of time series forecasting since activation function is the core element of any artificial neural network model. A set of wind speed data was collected from different meteorological stations in Malaysia, situated in Kuala Lumpur, Kuantan, and Melaka. The proposed activation functions tansig of NARNN and NARXNN resulted in promising outcomes in terms of very small error between actual and predicted wind speed as well as the comparison for the logsig transfer function results.
This paper proposes a process of sentiment analysis of movie reviews written in Bangla language. This process can automate the analysis of audience's reaction towards a specific movie or TV show. With more and more people expressing their opinions openly in the social networking sites, analyzing the sentiment of comments made about a specific movie can indicate how well the movie is being accepted by the general public. The dataset used in this experiment was collected and labeled manually from publicly available comments and posts from social media websites. Using Support Vector Machine algorithm, this model achieves 88.90% accuracy on the test set and by using Long Short Term Memory network [1] the model manages to achieve 82.42% accuracy. Furthermore, a comparison with some other machine learning approaches is presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.