Intrinsic role of preovulatory and nidatory estrogen and progesterone and presence of viable blastocysts in utero in pinopod development on the uterine luminal epithelial surface and correlation between time of their development and onset of endometrial sensitivity were investigated. In adult rats, pinopods were observed on the entire epithelium even before secretion of nidatory estrogen, i.e. at 14.00 h on day 4 post-coitum (p.c.). Apparently, their number increased, more so on the antimesometrial than the mesometrial side, at 10.00 h on day 5, but were fewer and mostly collapsed at 10.00 h on day 6. Pinopods on day 4 were located within epithelial depressions and foldings, but protruded from the surface on days 5 and 6. Normal pinopods were also present on day 8 p.c. in rats under delayed implantation, but an implantation-inducing dose of estradiol-17 beta administered about 18 h earlier caused their collapse like that on day 6 in intact rats. Development and appearance of pinopods in intact or delayed rats was unaffected when native preimplantation embryos were prevented from entering the uterus. Normal pinopods were seen in immature rats receiving progesterone for at least 3 days or cyproterone acetate for 4 days, but not after estradiol alone. In animals receiving progesterone or priming/sensitizing estradiol in addition to progesterone, the decidual response was suboptimal, irrespective of the presence of pinopods on the day of stimulation. In animals in which a condition mimicking preimplantation had been produced by suitable hormone supplementation, optimal endometrial sensitivity and decidual response were elicited, even though most pinopods appeared collapsed, resembling those on day 6 in intact rats and about 18 h after estradiol in implantation-delayed rats. Findings confirm that pinopod development on uterine luminal epithelium was dependent on progesterone alone and demonstrate that: (i) preovulatory (priming) or nidatory (endometrial sensitizing) estrogen or viable blastocysts in utero have no role in their development. Nidatory estrogen, instead, appears to limit pinopod development by causing their collapse; (ii) pinopod development/presence on the endometrial surface might indicate the uterus coming into a period of sensitivity rather than actually being in it and might thus serve as a useful marker of "transfer window" rather than "implantation window"; (iii) in the rat, pinopod development might serve as an alternate assay for evaluation of progestational activity of newer test agents.
The effect of nicotine on the ultrastructural changes and hormone contents of the neural lobe of the pituitary were studied in the rat. Nicotine caused a significant release of both vasopressin and oxytocin from the neural lobe. The examination of the neural lobe with electron microscope reveals the nerve terminals depleted of neurosecretory granules. These results suggest that a definite correlation exists between hormone contents and ultrastructural morphology.
Two cell types, the cyto- and syncytio-trophoblasts, were identified in human chorionic villi of 6-10 weeks' gestation. The intracellular organization of these cells was examined. Ultrathin sections of small pieces of chorionic villi revealed the presence of a multinucleate syncytiotrophoblastic layer, whose surface was covered with microvilli. The cytotrophoblasts, however, had a single large nucleus with a prominent nucleolus. An interesting feature of the basement membrane of these cells was the presence of aggregates of dark granules in samples of the earlier gestational age (6-8 weeks) and granular bodies having a dense outer ring and a translucent inner ring with a lucid central area in samples of 8-10 weeks' gestation. Both types of granules are mineralized and are assumed to perform a buffering role for maintaining the neutrality of the layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.