Nuclear morphology, chromosomal condensation, and transcriptional-mediated localization of genes to the nuclear periphery are disturbed by mutations in cohesin pathway genes.
The cohesin network has an essential role in chromosome segregation, but also plays a role in DNA damage repair. Eco1 is an acetyltransferase that targets subunits of the cohesin complex and is involved in both the chromosome segregation and DNA damage repair roles of the network. Using budding yeast as a model system, we find that mutations in Eco1, including a genocopy of a human Roberts syndrome allele, do not cause gross defects in chromosome cohesion. We examined how mitotic and meiotic DNA damage repair is affected by mutations in Eco1. Strains containing mutations in Eco1 are sensitive to DNA damaging agents that cause double-strand breaks, such as X-rays and bleomycin. While meiotic crossing over is relatively unaffected in strains containing the Roberts mutation, reciprocal mitotic crossovers occur with extremely low frequency in this mutant background. Our results suggest that Eco1 promotes the reciprocal exchange of chromosome arms and maintenance of heterozygosity during mitosis.
During production, an error was introduced into the abstract. The correct sentence appears below:In Saccharomyces cerevisiae, chromatin is spatially organized within the nucleus with centromeres clustering near the spindle pole body, telomeres clustering into foci at the nuclear periphery, ribosomal DNA repeats localizing within a single nucleolus, and transfer RNA (tRNA) genes present in an adjacent cluster.The html and pdf versions of this article have been corrected. The error remains only in the print version.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.