Three tyrosine-to-phenylalanine mutants of ribonuclease A (Y25F, Y92F, and Y97F) are investigated for their enzymatic activities, molecular stabilities, and unfolding/refolding kinetics. These mutants exhibit 80, 90, and 80%, respectively, of the catalytic activity of the wild-type enzyme. Thermal, Gdn.HCl, and pH transition measurements indicate that Y25F and Y97F are less stable than the wild-type protein, whereas the bulk of the thermodynamic and kinetic evidence indicates that Y92F is as stable as the wild-type protein. Differences in molar extinction coefficients indicate that tyrosines 25, 92, and 97 contribute 38, 13, and 39%, respectively, to the absorption difference between the folded and unfolded states, in general agreement with previous studies but possibly indicating the contribution of a fourth tyrosine residue to account for the remaining 10%. Stopped-flow single- and double-jump kinetic experiments were carried out on the wild-type and three mutant proteins. At least one tyrosine residue besides tyrosine 92 contributes to the slow fluorescence-unfolding phase; the likely candidate for this residue is tyrosine 115 which monitors the cis-trans isomerization of the X-Pro114 peptide bond. Tyrosines 25 and 97 are involved in interactions that retard conformational unfolding and accelerate conformational refolding as well as the cis-trans proline isomerization of the slow-refolding phases, presumably by stabilizing the major beta-hairpin structure of RNase A. These interactions may contribute to the strong pH dependence of the folding and unfolding of ribonuclease A. In contrast, tyrosine 92 does not affect the folding and unfolding rates significantly. An improved "box" model of proline isomerization under unfolding conditions was derived from exhaustive fitting of all possible box models. The kinetic data support the identification of Pro93 as the proline whose isomerization distinguishes the slow-refolding species (USII and USI) from the other, faster-refolding species (Uvf, Uf, and Um), implying that Pro93 isomerizes in the slow-refolding reactions USI --> N and IN --> N. Similarly, Pro114 seems to distinguish between the very fast-refolding species Uvf and the fast-refolding species Uf. Lastly, Pro117 seems to distinguish the major slow-refolding species USII from the minor slow-refolding species USI and the medium-refolding species Um from the fast- and very fast-refolding species.
The low-energy conformations of two dipeptides are examined using "empirical" energy calculations and the virtual-bond method. This method enables the complete conformational space, within which bend structures occur, to be represented in tabular form. The complete conformational spaces of the dipeptides, Nacetyl-N'methylglycyl-glycineamide and Nacetyl-N'methyl-L-alanyl-L-alanineamide, were searched systematically, and all conformations of minimum energy were found. The interaction energy between the first and second amino acid units is generally small compared to the total energy of the dipeptide at a local minimum-energy conformation. Thus, the dipeptide energy can be represented, to a first approximation, as a sum of the energies of its constituent amino acid units. Most combinations of single-residue energy minima correspond to local minima on the energy surface of the dipeptide, and the global minimum of both Gly-Gly and L-Ala-L-Ala is simply the combination of the global minima for each single residue. However, for minimum-energy bend conformations, there is a significant departure from additivity of single-residue energies. The low-energy conformation of the alanine dipeptide, which closely approximates a type II bend
The N-terminal cysteine-rich somatomedin B (SMB) domain (residues 1-44) of the human glycoprotein vitronectin contains the high-affinity binding sites for plasminogen activator inhibitor-1 (PAI-1) and the urokinase receptor (uPAR). We previously showed that the eight cysteine residues of recombinant SMB (rSMB) are organized into four disulfide bonds in a linear uncrossed pattern (Cys(5)-Cys(9), Cys(19)-Cys(21), Cys(25)-Cys(31), and Cys(32)-Cys(39)). In the present study, we use an alternative method to show that this disulfide bond arrangement remains a major preferred one in solution, and we determine the solution structure of the domain using NMR analysis. The solution structure shows that the four disulfide bonds are tightly packed in the center of the domain, replacing the traditional hydrophobic core expected for a globular protein. The few noncysteine hydrophobic side chains form a cluster on the outside of the domain, providing a distinctive binding surface for the physiological partners PAI-1 and uPAR. The hydrophobic surface consists mainly of side chains from the loop formed by the Cys(25)-Cys(31) disulfide bond, and is surrounded by conserved acidic and basic side chains, which are likely to contribute to the specificity of the intermolecular interactions of this domain. Interestingly, the overall fold of the molecule is compatible with several arrangements of the disulfide bonds. A number of different disulfide bond arrangements were able to satisfy the NMR restraints, and an extensive series of conformational energy calculations performed in explicit solvent confirmed that several disulfide bond arrangements have comparable stabilization energies. An experimental demonstration of the presence of alternative disulfide conformations in active rSMB is provided by the behavior of a mutant in which Asn(14) is replaced by Met. This mutant has the same PAI-1 binding activity as rVN1-51, but its fragmentation pattern following cyanogen bromide treatment is incompatible with the linear uncrossed disulfide arrangement. These results suggest that active forms of the SMB domain may have a number of allowed disulfide bond arrangements as long as the Cys(25)-Cys(31) disulfide bond is preserved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.