The enzyme tryptophan decarboxylase (TDC) (EC 4.1.1.28) converts tryptophan into tryptamine, and thereby channels primary metabolites into indole alkaloid biosynthesis. The production of these secondary metabolites in suspension cells of Catharanthus roseus depends on medium composition. Of the possible variables, we investigated the effect of hormones on the expression of the tdc gene in cell cultures. Omission of NAA from the growth medium resulted in accumulation of tdc mRNA. The addition of 1-naphthaleneacetic acid (NAA), indoleacetic acid (IAA) or 2,4-dichlorophenoxyacetic acid (2,4-D) rapidly reduced the enhanced tdc transcript level. Cytokinin was unable to suppress the enhanced transcript level. Hairy roots transformed by Agrobacterium rhizogenes also showed a reduction of the tdc mRNA level after NAA addition. Run-off transcription experiments showed that the down-regulation takes place at the transcriptional level within 15 minutes and independent of de novo protein synthesis. Thus one of the mechanisms which control the activity of terpenoid indole alkaloid biosynthesis in C. roseus cell cultures is the negative regulation by auxin of the gene involved in the first committed step.
In relation to the question which DNA form (single- or double-stranded) is transferred by Agrobacterium tumefaciens to plant cells, we studied the behaviour of single-stranded DNA, as compared to double-stranded DNA, when it is introduced into plant protoplasts by electroporation. To this end, we cloned a construct with a plant NPTII gene as well as a CAT gene in the M13 vectors tg130 and tg131. We found that both complementary single-stranded molecules gave rise to substantial CAT activity in plant protoplasts, suggesting that single-stranded DNA is converted into double-stranded DNA by the plant cell replication machinery. Unexpectedly, we found that single-stranded DNA leads to a 3-10-fold higher frequency of stable transformation (selection for kanamycin resistance) than double-stranded DNA. These results indicate that the use of single-stranded DNA might be considered in experiments in which optimal transformation frequencies are needed, e.g. with protoplasts from recalcitrant plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.