First-line antiproliferatives for non-small cell lung cancer (NSCLC) have a relatively high failure rate due to high intrinsic resistance rates and acquired resistance rates to therapy. 57% patients are diagnosed in late-stage disease due to the tendency of early-stage NSCLC to be asymptomatic. For patients first diagnosed with metastatic disease the 5-year survival rate is approximately 5%. To help accelerate the development of novel therapeutics and computer-based tools for optimizing individual therapy, we have collated data from 11 different clinical trials in NSCLC and developed a semi-mechanistic, clinical model of NSCLC growth and pharmacodynamics relative to the various therapeutics represented in the study. In this study, we have produced extremely precise estimates of clinical parameters fundamental to cancer modeling such as the rate of acquired resistance to various pharmaceuticals, the relationship between drug concentration and rate of cancer cell death, as well as the fine temporal dynamics of anti-VEGF therapy. In the simulation sets documented in this study, we have used the model to make meaningful descriptions of efficacy gain in making bevacizumab-antiproliferative combination therapy sequential, over a series of days, rather than concurrent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.