N-Methyltryptophan oxidase (MTOX) is a flavoenzyme that catalyzes the oxidative demethylation of N-methyl-L-tryptophan and other N-methyl amino acids, including sarcosine, which is a poor substrate. The Escherichia coli gene encoding MTOX (solA) was isolated on the basis of its sequence homology with monomeric sarcosine oxidase, a sarcosine-inducible enzyme found in many bacteria. These studies show that MTOX is expressed as a constitutive enzyme in a wild-type E. coli K-12 strain, providing the first evidence that solA is a functional gene. MTOX expression is enhanced 3-fold by growth on minimal media but not induced by N-methyl-L-tryptophan, L-tryptophan, or 3-indoleacrylate. MTOX forms an anionic flavin semiquinone and a reversible, covalent flavin-sulfite complex (K(d) = 1.7 mM), properties characteristic of flavoprotein oxidases. Rates of formation (k(on) = 5.4 x 10(-3) M(-1) s(-1)) and dissociation (k(off) = 1.3 x 10(-5) s(-1)) of the MTOX-sulfite complex are orders of magnitude slower than observed with most other flavoprotein oxidases. The pK(a) for ionization of oxidized FAD at N(3)H in MTOX (8.36) is two pH units lower than that observed for free FAD. The MTOX active site was probed by characterization of various substrate analogues that act as competitive inhibitors with respect to N-methyl-L-tryptophan. Qualitatively similar perturbations of the MTOX visible absorption spectrum are observed for complexes formed with various aromatic carboxylates, including benzoate, 3-indole-(CH(2))(n)-CO(2)(-) and 2-indole-CO(2)(-). The most stable complex with 3-indole-(CH(2))(n)-CO(2)(-) is formed with 3-indolepropionate (K(d) = 0.79 mM), a derivative with the same side chain length as N-methyl-L-tryptophan. Benzoate binding is enhanced upon protonation of a group in the enzyme-benzoate complex (pK(EL) = 6.87) but blocked by ionization of a group in the free enzyme (pK(E) = 8.41), which is attributed to N(3)H of FAD. Difference spectra observed for the aromatic carboxylate complexes are virtually mirror images of those observed with sarcosine analogues (N,N'-dimethylglycine, N-benzylglycine). Charge-transfer complexes are formed with 3-indoleacrylate, pyrrole-2-carboxylate, and CH(3)XCH(2)CO(2)(-) (X = S, Se, Te).
N-Methyltryptophan oxidase (MTOX), a flavoenzyme from Escherichia coli, catalyzes the oxidative demethylation of N-methyl-L-tryptophan (k(cat) = 4600 min(-1)). Other secondary amino acids (e.g., sarcosine) are oxidized at a slower rate. We have identified carbinolamines as a new class of alternate substrate. MTOX oxidation of the carbinolamine formed with L-tryptophan and formaldehyde yields N-formyl-L-tryptophan in a relatively slow reaction that does not compete with turnover of MTOX with N-methyl-L-tryptophan. Double reciprocal plots with N-methyl-L-tryptophan as the varied substrate are nearly parallel, but the slopes show a small, systematic variation depending on the oxygen concentration. N-Benzylglycine, a dead-end competitive inhibitor with respect to N-methyl-L-tryptophan, acts as a noncompetitive inhibitor with respect to oxygen. The results are consistent with a modified ping pong mechanism where oxygen binds to the reduced enzyme prior to dissociation of the imino acid product. MTOX is converted to a 2-electron reduced form upon anaerobic reaction with N-methyl-L-tryptophan, sarcosine, or the carbinolamine formed with L-tryptophan and formaldehyde. No evidence for a detectable intermediate was obtained by monitoring the spectral course of the latter two reactions. MTOX reduction with thioglycolate does, however, proceed via a readily detectable anionic, flavin radical intermediate. The reductive half-reaction with sarcosine at 4 degrees C exhibits saturation kinetics (k(lim) = 6.8 min(-1), K = 39 mM) and other features consistent with a mechanism in which a nearly irreversible reduction step (E(ox).S --> E(red).P) (k(lim)) is preceded by a rapidly attained equilibrium (K) between free E and the E.S complex. The 21 degrees C temperature difference can reasonably account for the 3.6-fold lower value obtained for k(lim) as compared with turnover at 25 degrees C (k(cat) = 24.5 min(-1)), suggesting that sarcosine is oxidized at a kinetically significant rate under anaerobic conditions and the reductive half-reaction is rate-limiting during turnover. These conclusions are, however, difficult to reconcile with steady-state kinetic patterns obtained with sarcosine that are consistent with a rapid equilibrium ordered mechanism with oxygen as the first substrate. The basis for the apparent stability of the MTOX.oxygen complex (K(d) = 72 microM) is unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.