Seventy-three patients with vascular occlusions in the pelvis or lower limbs and three patients with upper limb lesions were treated by local low dose fibrinolysin, with strict control of any possible bleeding tendencies. Adequate recanalisation was obtained in 56 patients (73.6%). In ten patients, the occlusion recurred while the patient was still in hospital. After four to six months, 37 of the 56 (67%) of the vessels were still patent. In 18 patients, peripheral emboli resulted in some deterioration, but in 15 of these cases this could be treated successfully by operation. The methods and indications of local fibrinolysis therapy and the problems associated with it are discussed.
Zebrafish have been found to be the premier model organism in biological and biomedical research, specifically offering many advantages in developmental biology and genetics. This unique aquatic species has been found to have the capacity to regenerate their spinal cord after injury. However, the complete molecular and cellular mechanisms behind glial bridge formation in the central and peripheral nervous systems upon glial cell injury remains unclear. This review paper focuses on the molecular mechanisms and cellular processes that underlie spinal cord regeneration in four initial phases: proliferation and initial migration; migration and differentiation; glial bridge formation; and remodeling. We propose that within these four phases the cellular mechanisms that underlie spinal cord regeneration each express a terminating signal that aborts one step of the process and initiates the next. Specifically, future studies would be devoted to investigate transmitting signals in the spinal cord injury micro-environment in hope to contribute to the understanding of underlying cellular mechanisms by connecting each process of spinal cord regeneration in zebrafish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.