Mechanoreceptors on the skin are heterogeneously distributed, and the sampling of neural signals in the brain can vary depending on the part of the body. Therefore, it can be challenging for the brain to consistently represent stimuli applied to different body sites. Here, we report an example of a regional perceptual distortion of the tactile space. We used a piezoelectric braille display to examine shape perception on the volar surface of the arm and to compare it to that on the palm. We found that the orientation of perceived stimuli on the arm was distorted in certain areas. In particular, an inwardly-inclined line shape was perceived as being more inwardly-inclined than it actually was. On the other hand, an outwardly-inclined line was perceived accurately. When the same stimuli were applied to the palm, this anisotropic bias was not observed. We also found that changing the posture of the arm changed the angle at which this anisotropic distortion occurred, suggesting the influence of the skin frame of reference on this illusion. This study showed a clear example of how the representation of even simple stimuli is complexly distinct when the stimuli are applied to different body sites.
There are use cases where presenting spatial information via the tactile sense is useful (e.g., situations where visual and audio senses are not available). Conventional methods that directly attach a vibrotactile array to a user's body present spatial information such as direction by having users localize the vibration source from among the sources in the array. These methods suffer from problems such as heat generation of the actuator or the installation cost of the actuators in a limited space. A promising method of coping with these problems is to place the vibrotactile array at a distance from the body, instead of directly attaching it to the body, with the aim of presenting spatial information in the same way as the conventional method. The present study investigates the method's effectiveness by means of a psychophysical experiment. Specifically, we presented users with sinusoidal vibrations from remote vibrotactile arrays in the space around the hand and asked them to localize the source of the vibration. We conducted an experiment to investigate the localization ability by using two vibration frequencies (30 Hz as a low frequency and 230 Hz as a high frequency). We chose these two frequencies since they effectively activate two distinctive vibrotactile channels: the rapidly adapting afferent channel and the Pacinian channel. The experimental results showed that humans can recognize the direction of the vibration source, but not the distance, regardless of the source frequency. The accuracy of the direction recognition varied slightly according to the vibration source direction, and also according to the vibration frequency. This suggests that the calibration of stimulus direction is required in the case of both high and low frequencies for presenting direction accurately as intended. In addition, the accuracy variance of direction recognition increased as the source became farther away, and the degree of increase was especially large with the low-frequency source. This suggests that a high frequency is recommended for presenting accurate direction with low variance.
Human fingertips are amazingly sensitive. They can easily detect a single strand of hair that has fallen onto a desktop and distinguish between metal surfaces that have been polished to different degrees. Our group uses perceptual psychology methods to study tactile sensory mechanisms. This article introduces tactile illusions that illustrate how the tactile sensory system processes information and provides stable perception. This line of research is expected to yield efficient information-presentation techniques.
Skin covers the entire body, and its thickness and distribution of mechanoreceptors vary markedly across body parts. It has been shown that the brain is not able to fully compensate for such anisotropy, and as a result, the representational space of touch differs depending on which parts the stimulus is applied to. Here, by contrasting the hand and arm, we investigated the difference in perceived motion. Using a large-area braille display, we were able to present precisely controlled touchable motion stimuli with randomizing stimulus trajectories and varying the size. We found a new perceptual illusion in which the motion direction of stimuli perceived on the arm is rotated regionally, or even flipped. In particular, obliquely moving stimuli that move toward the distal radial are perceived as move toward the proximal radial, and stimuli that move toward the proximal ulnar are perceived as move toward the distal ulnar. This illusion was not observed on the palm, regardless of compensation for the stimulus size. Current study adds a clear example of how presenting the same motion stimuli to different body parts results in a different perception, emphasizing that the perceived tactile space is not uniform and needs to be examined in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.