In this paper we present an analysis of the spin behavior of electrons propagating through a laser field. We present an experimentally realizable scenario in which spin-dependent effects of the interaction between the laser and the electrons are dominant. The laser interaction strength and incident electron velocity are in the nonrelativistic domain. This analysis may thus lead to novel methods of creating and characterizing spin-polarized nonrelativistic femtosecond electron pulses.
The magnetic Aharonov-Bohm (A-B) effect occurs when a point charge interacts with a line of magnetic flux, while its reciprocal, the Aharonov-Casher (A-C) effect, occurs when a magnetic moment interacts with a line of charge. For the two interacting parts of these physical systems, the equations of motion are discussed in this paper. The generally accepted claim is that both parts of these systems do not accelerate, while Boyer has claimed that both parts of these systems do accelerate. Using the Euler-Lagrange equations we predict that in the case of unconstrained motion, only one part of each system accelerates, while momentum remains conserved. This prediction requires a time-dependent electromagnetic momentum. For our analysis of unconstrained motion, the A-B effects are then examples of the Feynman paradox. In the case of constrained motion, the Euler-Lagrange equations give no forces, in agreement with the generally accepted analysis. The quantum mechanical A-B and A-C phase shifts are independent of the treatment of constraint. Nevertheless, experimental testing of the above ideas and further understanding of the A-B effects that are central to both quantum mechanics and electromagnetism could be possible.
An adaptive, hyperspectral imager is presented. We propose a system with easily adaptable spectral resolution, adjustable acquisition time, and high spatial resolution which is independent of spectral resolution. The system yields the possibility to define a variety of acquisition schemes, and in particular near snapshot acquisitions that may be used to measure the spectral content of given or automatically detected regions of interest. The proposed system is modelled and simulated, and tests on a first prototype validate the approach to achieve near snapshot spectral acquisitions without resorting to any computationally heavy post-processing, nor cumbersome calibration.
We demonstrate a wide-angle electron beam splitter capable of producing 1 cm beam separation at the detection plane. The beam splitter utilizes a nanofabricated periodic grating in combination with a bi-prism element. In contrast to devices utilizing only bi-prism elements, the use of the periodic grating causes amplitude, and not wavefront, splitting. Even at maximum separation, beam profiles remain undistorted, providing evidence that coherence is intact. This is a step towards the realization of a large area electron interferometer using such a grating bi-prism combination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.